期刊文献+

群分次Frobenius余环

On group graded Frobenius corings
下载PDF
导出
摘要 令G是一个群,A是一个环,C是群分次A-余环.定义了群分次Frobenius余环,这个概念是Frobenius余环概念的推广.给出群分次余环是群分次Frobenius余环的充分与必要条件,证明了群分次Frobenius余环是群分次环,并且A→Ce是Frobenius扩张. Let G was a group, A a ring, Ca group graded A - coring. The notion of group graded Frobenius corings was defined, which generalised the notion of Frobenius coring. We found the necessary and sufficient conditions for a group graded coring was a group graded Frobenius coring. We proved that a group graded Frobenius corings was a ring, and A→Ce was Frobenius extension.
作者 郭广泉
出处 《安徽大学学报(自然科学版)》 CAS 北大核心 2008年第5期5-7,共3页 Journal of Anhui University(Natural Science Edition)
关键词 Frobenius余环 群余环 群分次Frobenius余环 Frobenius coring group coring group graded Frobenius coring
  • 相关文献

参考文献5

  • 1Sweedler M E. The predual theorem to the Jacobson- Bourbaki theorem[ J ]. Trans Amer Math Soc, 1975,213 (4) : 391 - 406.
  • 2Brzezinski T. The structure of corings,induction functors, Maschke - type theorem, and Frobenius and Galois - type properties [ J ]. Algebras Rep Theory, 2002, 5 (4) : 1389 - 410.
  • 3Guo G. Quasi - Frobenius corings and quasi - Frobenius extensions [ J ]. Commun Algebra, 2006,34 (6) : 2269 - 2280.
  • 4Caenepeel S, Janssen K, Wang S H. Group corings [ EB/OL ]. [ 2006 - 12 - 19 ] [ 2007 - 01 - 31 ] http ://aorxgi/vy. ear/math/0701931 v1.
  • 5Brzezinski T. Towers of corings [ J ]. Comm Algebra,2003, 31 (4) :2015 - 2026.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部