期刊文献+

基于BP神经网络的机械臂模糊自适应PID控制 被引量:2

Fuzzy adaptive PID control based on BP neural network for robotic manipulator
下载PDF
导出
摘要 机械臂属于强耦合多变量的典型非线性系统,常规的控制策略难以取得满意的控制效果。采用基于BP神经网络的模糊自适应PID控制策略,解决了原有PID控制的参数自适应能力弱、鲁棒性较差的问题。该方法采用BP神经网络动态调整PID控制器参数,使之能够随时满足控制精度的需要,改善系统的控制性能。仿真实验结果表明:所提的控制策策略实现简单,同时具有较高的控制精度。 For robotic manipulator with decoupling effect and strong nonlinearity, satisfied control pertormance can hardly be achieved by using traditional control methods. To deal with the control of the robotic manipulator, a kind of fuzzy adaptive PID controller based on BP neural network is presented, which solved the problem of the robustness of PID controller. The parametres of the controller are dynamically adjusted by the output of the BP neural network, so the control performance can be satisfied momentarily. The simulation results inlurstrate that the control strategy can be performed easily and has relatively high control precision.
作者 张文庆
出处 《黑龙江大学自然科学学报》 CAS 北大核心 2008年第5期599-604,共6页 Journal of Natural Science of Heilongjiang University
基金 黑龙江省教育厅科学技术指导项目(10553032)
关键词 机械臂 非线性控制 模糊自适应PID控制 BP神经网络 robotic manipulator nonlinear control Fuzzy adaptive PID control BP neural network
  • 相关文献

参考文献15

  • 1Spong M W. Swing up control of the acrobat[ C ]//1994 Proceedings IEEE International Conference on Robotics and Automation. San Diego, CA: IEEE Press, 1994 : 2356 - 2361.
  • 2Slotine J J, Li W. Applied nonlinear control[ M]. Englewood Cliffs, NJ: Prentice Hall, 1991.
  • 3Fernando R, Rafael K. Experimental evaluation of model - based controllers on a direct drive robot ann [ J]. Mechatronics,2001, ( 1 ) : 267 -282.
  • 4代颖,施颂椒.全局稳定的PD+ 前馈机器人鲁棒自适应控制[J].自动化学报,2002,28(1):11-18. 被引量:7
  • 5Wai R, Chen P C. Robust Neural - Fuzzy - Network control for robot manipulator including actuator dynamics[ J].IEEE Trans Ind Electron, 2006, 53(4) :1328 - 1349.
  • 6李雪莲,刘小勇.PID模糊控制器结构研究[J].机械工程与自动化,2005(2):96-97. 被引量:8
  • 7Hecht N R. Theory of the backpropagation neural network[ C ]//Proceedings of the International Joint Conference on Neural Networks. New York:IEEE Press, 1989, ( 1 ) :593 -606.
  • 8Albtls J S. A new approach to manipulator control : the eerebellar model articulation controller (CMAC) [ J]. Journal of Dynamics Systems,Measurement and Control, 1975, 97 : 220 - 227.
  • 9Liguni Y. , Sakai H, Tokumaru H. A nonlinear regulator design in the presence of system uncertainties using multilayered neural networks[J]. IEEE Trans on Neural Networks, 1991, (2) : 410 -417.
  • 10Sanner R M, Slotine J J E. Stable adaptive control of robot manipulators using "neural" networks [ J ]. Neural Computation, 1995, 7 (4), 753 - 790.

二级参考文献5

共引文献14

同被引文献14

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部