期刊文献+

分段连续型随机微分方程的均方稳定性分析(英文) 被引量:1

Mean square stability of stochastic differential equations with piecewise continuous arguments
下载PDF
导出
摘要 考虑了自变量分段连续型随机微分方程dX(t)=(a1X(t)+a2X([t]))dt+(b1X(t)+b2X([t]))dW(t)的解析解和数值解的均方稳定性.得到了解析解的表达形式,证明了当2a1+b12+b22+2|a2+b1b2|<0时,解析解是均方稳定的.在此条件下,讨论了由半隐式欧拉方法得到的数值解的稳定性,得到如下结论:当0≤θ<a1-|a2|2a1时,0<h<-2a1+b12+b22+2|a2+b1b2|(|a1|+|a2|)((1-2θ)|a1|+|a2|);当a1-|a2|2a1≤θ≤1,0<h<∞. Abstract: The mean - square stability of the analytic and numerical solutions of linear stochastic dif- ferential equations dX(t) = (a1X(t) +a2X[(t] ) )dt + (b1X(t) + b2X([t] ) )dW(t) with piecewise continuous arguments is investigated. The explicit form of the analytic solutions is obtained, and it is proved that under the condition 2a1 + b^21 + b^22 + 2|a2 + b1b2| 〈 0, the analytic solutions are mean -square stable.The semi -implicit Euler method is defined, and the mean -sqaure stability of the numerical solutions is discussed under the condition. The result is when 0〈h〈-2a1+b^21+2|a2+b1b2|(|a1|+|a2|)((1-2θ)|a1|+|a2|);当a1-|a2|2a1≤θ≤1,0〈h〈∞.
出处 《黑龙江大学自然科学学报》 CAS 北大核心 2008年第5期625-629,共5页 Journal of Natural Science of Heilongjiang University
基金 the Natural Science Foundation of China(10671047)
关键词 随机微分方程 自变量分段连续型微分方程 随机混杂系统 均方稳定 SDE EPCA Stochastic hybrid systems MS - stable
  • 相关文献

参考文献10

  • 1Busenberg S, Cooke K L. Models of vertically transmitted diseases with sequential -continuous dynamics[ C]//Lakshmikantham V. Nonlinear Phenomena in Mathematical Sciences. New York : Academic Press, 1982 : 179 - 187.
  • 2Wiener J. Differential equations with piecewise constant delays [ C ]//Lakshmikantham V. Trends in the Theory and Practice of Nonliear Differential Equations. New York : Marcel Dekker, 1983:547 - 552.
  • 3Gard T C. Introduction to stochastic differential equations[ M ]. New York:Marcel Dekker, 1985:157 -181.
  • 4Mao X R. Stochastic differential equations and their applications[ M]. New York:Harwood, 1997.
  • 5Cao W R, Liu M Z, Fan Z C. MS- Stability of the Euler- Maruyama method for stochastic differntial delay equations[ J]. Appl Math Comput, 2004, 159: 127-135.
  • 6Liu M Z, Cao W R, Fan Z C. Convergence and stability of semi - implicit euler methods for a linear stochastic delay differntial equation[J]. J Comput Appl Math, 2004, 170:255 -268.
  • 7Liu M Z, Song M H, Yang Z W. Stability of Runge - Kuna methods in the numerical solution of equation u' (t) = aa(t) + a0 u( [ t ] ) [ J ]. J Comput Appl Math, 2004, 166:361 - 370.
  • 8Song M H, Yang Z W, Liu M Z. Stability of θ - methods advanced differential equations with piecewise continuous argument[ J]. Compt Math Appl, 2005, 49:1205 - 1301.
  • 9Wiener J. Generalized solutions of differential equations[ M]. Singapore: World Scientific, 1993.
  • 10Kloeden P E, Platen E. Numerical solution of stochastic differential equations[ M ]. Berlin:Springer, 1992:103 -221, 253 -277, 457 -511.

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部