摘要
考虑了自变量分段连续型随机微分方程dX(t)=(a1X(t)+a2X([t]))dt+(b1X(t)+b2X([t]))dW(t)的解析解和数值解的均方稳定性.得到了解析解的表达形式,证明了当2a1+b12+b22+2|a2+b1b2|<0时,解析解是均方稳定的.在此条件下,讨论了由半隐式欧拉方法得到的数值解的稳定性,得到如下结论:当0≤θ<a1-|a2|2a1时,0<h<-2a1+b12+b22+2|a2+b1b2|(|a1|+|a2|)((1-2θ)|a1|+|a2|);当a1-|a2|2a1≤θ≤1,0<h<∞.
Abstract: The mean - square stability of the analytic and numerical solutions of linear stochastic dif- ferential equations dX(t) = (a1X(t) +a2X[(t] ) )dt + (b1X(t) + b2X([t] ) )dW(t) with piecewise continuous arguments is investigated. The explicit form of the analytic solutions is obtained, and it is proved that under the condition 2a1 + b^21 + b^22 + 2|a2 + b1b2| 〈 0, the analytic solutions are mean -square stable.The semi -implicit Euler method is defined, and the mean -sqaure stability of the numerical solutions is discussed under the condition. The result is when 0〈h〈-2a1+b^21+2|a2+b1b2|(|a1|+|a2|)((1-2θ)|a1|+|a2|);当a1-|a2|2a1≤θ≤1,0〈h〈∞.
出处
《黑龙江大学自然科学学报》
CAS
北大核心
2008年第5期625-629,共5页
Journal of Natural Science of Heilongjiang University
基金
the Natural Science Foundation of China(10671047)