期刊文献+

一种有效的并行频繁项集挖掘算法 被引量:2

Effective parallel algorithm for mining frequent itemsets
下载PDF
导出
摘要 传统的挖掘频繁项集的并行算法存在各节点间负载不均衡、同步开销过大、通信量大等问题。针对这些问题,提出了一种多次传送重新分配数据的并行算法(MRPD)。MRPD算法在第l步时将数据库重新划分成若干组,并根据各节点的需要多次传送分组;各节点获得完整分组后异步地计算频繁项集;所有节点计算完成后,得到全部频繁项集。理论分析和实验结果表明MRPD算法是有效的。 There were problems in traditional parallel algorithms for mining frequent itemsets, such as load imbalance, frequent synchronization, large scale communication and so on. Aiming at solving these problems, this paper proposed a parallel algorithm with multi-transmitting redistributed data (MRPD). In MRPD, data was redistributed into some groups at step l, and all the groups were multi-transmitted according to the request of computer nodes. Each node would compute frequent itemsets asynchronously after having received one full group. Finally, resulted the integrated frequent itemsets. Theoretical analysis and experimental results suggest that MRPD is effective.
出处 《计算机应用研究》 CSCD 北大核心 2008年第11期3332-3334,共3页 Application Research of Computers
基金 安徽省自然科学基金资助项目(050420207)
关键词 数据挖掘 并行算法 频繁项集 data mining parallel algorithm frequent itemsets
  • 相关文献

参考文献7

  • 1AGRAWAL R, IMIELINSKI T, SWAMI A. Mining association rules between sets of items in large databases [ C ]//Proc of ACM SIGMOD International Conference on Management of Data. New York: ACM Press, 1993:207- 216.
  • 2AGRAWAL R, SRKANT R. Fast algorithms for mining association rules [ C]//Proc of the 20th International Conference on Very Large Databases. San Francisco:Morgan Kaufmann Publishers, 1994:487-499.
  • 3SAVASERE A, OMIECINSKI E, NACATHE S. An efficient algorithm for mining association rules in large database [ C ]//Proc of the 21st International Conference on Very Large Databases. San Francisco: Morgan Kanfmann Publishers, 1995:432-444.
  • 4HAN Jia-wei, PEI Jian, YIN Yi-wen. Mining frequent patterns without candidate generation [ C]//Proc of ACM SIGMOD International Conference on Management of Data. New York : ACM Press, 2000 : 1 - 12.
  • 5AGRAWAL R, SHARFER J. Parallel mining of association rules[J]. IEEE Trans on Knowledge and Data Engineering, 1996,8 (6) : 962- 969.
  • 6CHEUNG W L, VINCENT N, FU W C, et al. Efficient mining of association rules in distributed database [ J ]. IEEE Trans on Knowledge and Data Engineering,1996,8( 1 ) :911-922.
  • 7杨明,孙志挥,吉根林.快速挖掘全局频繁项目集[J].计算机研究与发展,2003,40(4):620-626. 被引量:35

二级参考文献2

  • 1RAgrawa1 TImie1inSki Aswami.Mining association ru1es between sets of items in 1arge database[J].The ACM SIGMOD Intemationa1 Conf on Management of Data, Washington, DC,1993,.
  • 2路松峰,卢正鼎.快速开采最大频繁项目集[J].软件学报,2001,12(2):293-297. 被引量:113

共引文献34

同被引文献23

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部