摘要
用构造算子的方法来处理具有混合型边值条件的Sturm-Liouville边值问题(BVP)。考虑当时间t=0,该边值问题具有强奇性的情况,仍能得到其正解的存在性。若存在t∈[0,1],使得权P(t0)=0,则称该边值问题在t0点处具有奇性。主要讨论奇点出现在t0=0时的情况,当∫0^1dt/p(t)〈∞时,称该边值问题在t0=0具有弱奇性;如果∫0^1dt/p(t)=∞,称该边值问题在t0=0具有强奇性。
In this paper, by constructing the operator we deal with the Sturm-LiouviUe boundary value problem with mixed boundary conditions. We can still obtain the existence of positive solutions for the boundary value problem if the time t = 0 is strong singularity. Normally if it exits t0∈[ 0, 1 ], indefinite weight p ( t0 ) = 0, we call that Sturm-Liouville boundary problem is singular. In this paper,we mainly discuss the singularity at to =0,if ∫0^1dt/p(t)〈∞ ,the boundary problem is weak singular at t=0 ;if ∫0^1dt/p(t)=∞ ,the boundary problemis strong singular at t = O.
出处
《东北电力大学学报》
2008年第4期34-38,共5页
Journal of Northeast Electric Power University
关键词
边值问题
正解
存在性
强奇性
Boundary value problem
Positive solutions
The existence
Strong singular