期刊文献+

一类具有强奇性的Sturm-iouville边值问题正解的存在性

The Existence of Positive Solutions for a Class of Sturm-Liouville Boundary Value Problem with Strong Singular
下载PDF
导出
摘要 用构造算子的方法来处理具有混合型边值条件的Sturm-Liouville边值问题(BVP)。考虑当时间t=0,该边值问题具有强奇性的情况,仍能得到其正解的存在性。若存在t∈[0,1],使得权P(t0)=0,则称该边值问题在t0点处具有奇性。主要讨论奇点出现在t0=0时的情况,当∫0^1dt/p(t)〈∞时,称该边值问题在t0=0具有弱奇性;如果∫0^1dt/p(t)=∞,称该边值问题在t0=0具有强奇性。 In this paper, by constructing the operator we deal with the Sturm-LiouviUe boundary value problem with mixed boundary conditions. We can still obtain the existence of positive solutions for the boundary value problem if the time t = 0 is strong singularity. Normally if it exits t0∈[ 0, 1 ], indefinite weight p ( t0 ) = 0, we call that Sturm-Liouville boundary problem is singular. In this paper,we mainly discuss the singularity at to =0,if ∫0^1dt/p(t)〈∞ ,the boundary problem is weak singular at t=0 ;if ∫0^1dt/p(t)=∞ ,the boundary problemis strong singular at t = O.
出处 《东北电力大学学报》 2008年第4期34-38,共5页 Journal of Northeast Electric Power University
关键词 边值问题 正解 存在性 强奇性 Boundary value problem Positive solutions The existence Strong singular
  • 相关文献

参考文献6

  • 1[1]L.H.Erbe,H.Wong,On the existence of positive solutions of ODEs[J].Proc.Amer.Math.Soc.120 (1994) 743-748.
  • 2[2]V.Anuradha et al,Existence reslut for superlinear semi-positive BVPs[J].Proc.Amer.Math.Soc.124 (1996)757-763.
  • 3[3]R.P.Agarwal et al,The existence of positive solutions for the strum-liouville boundary value problems[J].Comp.Math.Appl.35 (1998)89-96.
  • 4[4]Ge Weigao,Ren Jingli,New existence theorems of positive solutions for strum-liouville boundary value problems[J].Appl.Math.Comput.148 (2004)631-644.
  • 5[5]D.D.Hai,R.Shivaji,Existence an uniqueness for a class of quasilinear elliptic boundary value problems[J].J.Differential Equations.193(2003)500-510.
  • 6[6]M.A.Krasnoselskii,Positive solutions of operator equations[M].Noordhoff,Groninger,The Netherlands,1964.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部