期刊文献+

不同进料方式下气液喷射器内流体流动和混合特征 被引量:7

Hydrodynamic and Mixing Characteristics of Gas-liquid Flow Under Different Feed Types
下载PDF
导出
摘要 利用Fluent模拟了喷射器内气液两相在不同进料方式下(气体进口中心线与液体进口中心线偏移量不同)的流体力学和混合特征。其中A方式偏移2.5 mm;B方式偏移0 mm;C方式偏移4.0 mm,此时气体与液体完全相切进料。结果表明:在相同的喷嘴速度时,A方式下喷射器压力降与空气卷吸量最大,C方式下气体和液体的碰撞机会少于其他进料方式,压力和空气卷吸量最小,B方式下喷射器压力降与空气卷吸量居中;而混合效果随着偏移量由大到小(C、B、A)依次增强,但是增强效果不很明显。同时,还以C方式为例讨论了喷射器内喷嘴速度与压力降及空气卷吸量的关系,两者都随着喷嘴速度的增大而增大,且喷射器的压力降与空气卷吸量呈显著的线性相关,相关系数高达0.984。根据模拟结果分析,当3种进料方式压力降相同时,C方式气体卷吸量最大,即相同喷射性能时C方式的能量损失最小。 The hydrodynamics and mixing characteristics of the gas-liquid ejectors at three different feed ways have been simulated by Fluent software: the distance of the gas entrance centerline deviates from the liquid entrance center (deviation distance) is 2.5 mm in the mode A. In the mode B, the deviation distance is 0 mm. Deviation distance is 4.0 mm in the mode C, and in this way the gas was fed in tangentially to the liquid fiow direction. The results show that, at the same nozzle velocity, mode A has the maximum pressure drop and gas entrainment rate. While, Mode C has minimum pres sure drop and entrainment rate because the collision efficiency of gas and liquid under this mode is less than other modes. The mixing effect enhances in the order of mode C, B, A. However the difference is inconspicuous. In the mode C, the effects of the nozzle velocity on the pressure drop and entrainment rate have been discussed. Both of them increase with the increasing nozzle velocity and the correlation between pressure drop and entrainment rate is linear. Based on the simulation analysis, when the three feed methods have the same pressure drop, the gas entrainment rate has maximum value in method C. It is concluded that method C also has the minimum energy consumption under the same jet performance.
出处 《青岛科技大学学报(自然科学版)》 CAS 2008年第5期426-431,共6页 Journal of Qingdao University of Science and Technology:Natural Science Edition
关键词 喷射器 气液两相流 流体力学 混合 ejector gas-liquid flow hydrodynamic mixing
  • 相关文献

参考文献13

  • 1Cramers, P H M R, Beenackers, A A C M, Van Dierendonck L L. Hydrodynamics and mass transfer characteristics of a loop-venturi reactor with a downflow liquid jet ejector[J]. Chemical Engineering Science, 1992, 47: 3557-3564.
  • 2Kleingeld A W. Lorenzen L, and modeling of high intensity Botes F G. The development impinging stream jet reactors for effective mass transfer in heterogeneous system[J].Chemical Engineering Science, 1999, 54(21):4991-4995.
  • 3Cramers P H M R, Beenaekers A A C M. Influence of the e jector configuration, scale and the gas density on the mass transfer characteristics of gas liquid ejector[J].Chemical Engineering Journal, 2001, 82:131-141.
  • 4田俊波.喷射器结构参数的设计计算[J].化工装备技术,1997,18(3):11-13. 被引量:10
  • 5Witte J H. Mixing shocks in two phase flow[J]. Journal of Fluid Mechanics, 1969, 36: 639-655.
  • 6Cunningha R G, Dopkin R J. Jet breakup and mixing throat lengths for the liquid jet gas pump[J]. Trans ASME J Fluids Engng, 1974, 96:216-226.
  • 7Ben Brahim A, Prevost M, Bugarel R. Momentum transfer in a vertical down flow liquid jet ejector: case of self gas aspiration, and emulsion flow[J].International Journal of Multi phase Flow, 1984, 10:79-94.
  • 8Havelka P, Linek V, Sinkule J, et al. Effect of the ejector configuration on the gas suction rate and gas hold-up in ejector loop reactors[J]. Chemical Engineering Science, 1997,52(11): 1701- 1713.
  • 9Rylek M, Zahradn K J. Design of venturi-tube gas distributors for bubble-type reactors[J]. Collect Czech Chem Commun, 1984, 49: 1939-1948.
  • 10Bando Y, Kuraishi M, Nishimura M, et al. The characteristics of a bubble column with a gas-suction-type, simultaneous gas-liquid injection nozzle[J].International Chemical Engineering, 1990, 30: 729-737.

共引文献9

同被引文献81

引证文献7

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部