期刊文献+

基于模糊时间序列的预测模型——以上证指数为例 被引量:8

Forecasting Model Based on Fuzzy Time Series——With an Example to Shanghai Stock Index
下载PDF
导出
摘要 模糊理论使用语义变量本身所蕴含的特性,能减少处理问题时的不确定性所带来的困扰,被广泛的应用于各种领域的研究。首先回顾了基于模糊理论的模糊时间序列定义,对现有的模糊时间序列模型进行分析;在此基础上提出了一种新的模糊时间序列预测方法,以上证指数为对象进行了拟合。从结果看,新的基于模糊时间序列预测方法在MSN、平均误差(%)和标准误差(%)等指标上要优于现有的的预测方法。 Fuzzy set theory was originally developed to handle problems involveing human linguistic terms, it can reduce the uncertainty of the complex and highly nonlinear systems, and is widely used in many aspects of our lives.In this paper, definition of fuzzy time series is revisited,the exiting fuzzy time series models are analysised and a new fuzzy time seires forecastiug mothod is presented.By using the Shanghai compound indes as the forecasting target, the empirical results show that the proposed method can get a higher forecasting accuracy rate than the exiting on msn, mean error and standard deviation.
作者 吴铭峰 蒋勋
出处 《价值工程》 2008年第11期165-168,共4页 Value Engineering
关键词 模糊时间序列 模糊集 平均误差 预测 模型 Fuzzy Time Series Fuzzy Set Mean Error Forcasting Models
  • 相关文献

参考文献12

二级参考文献25

  • 1范正绮,王祥云.ARIMA模型在汇率时间数列预测中的应用[J].上海金融,1997(3):28-29. 被引量:6
  • 2[1]Clymer J P Corey, Gardner J. Discrete Event Fuzzy Airport Control. IEEE Transactions on Systems.Man, and Cybernetics, 1992, 22(2): 343-351
  • 3[2]Cutsem B V, Gath I. Detection of Outliers and Robust Estimation Using Fuzzy Clustering. Computational Statistics and Data Analysis, 1993, 15:47-61
  • 4[3]Hathaway R J, Bezdek J C. Switching Regression Models and Fuzzy Clustering. IEEE Transactions of Fuzzy Systems, 1993, 1:195-204
  • 5[4]Yoshinari Y, Pedrycz W, Hirota K. Construction of Fuzzy Models through Clustering Techniques. Fuzzy Sets and Systems, 1993, 54:157-165
  • 6[5]Romer C, Kandel A, Backer E. Fuzzy Partitions of the Sample Space and Fuzzy Parameter Hypotheses.IEEE Transactions on Systems, Man and Cybernetics, 1995, 25(9): 1314-1321
  • 7[6]Wu B, Hung S. A Fuzzy Identification Procedure for Nonlinear Time Series: with Example on ARCH and Bilinear Models. Fuzzy Set and System, 1999, 108:275-287
  • 8[7]Wu B, Chen M. Use Fuzzy Statistical Methods in Change Periods Detection. Applied Mathematics and Computation, 1999, 99:241-254
  • 9[8]Klir G J, Folger T A. Fuzzy Set, Uncertainty, and Information. Englewood Cliffs, NJ: Prentice Hall,1988
  • 10[9]Zimmermann H J. Fuzzy Set Theroy and Its Applications. Boston: Kluwer Academi, 1991

共引文献48

同被引文献67

  • 1何云峰,杨燕.基于模糊时间序列——股票走势的建模与应用[J].微计算机信息,2006,22(11X):253-255. 被引量:9
  • 2陈文哲.材料测试与表征技术的挑战和展望[J].理化检验(物理分册),2007,43(5):245-249. 被引量:5
  • 3Song, Q., Chissom, B. S. Fuzzy Time Series and Its Models[J]. Fuzzy Sets and Systems,1993,(54).
  • 4Song, Q., Chissom, B. S. Forecasting Enrollments with Fuzzy Time series-Part Ⅰ[J].Fuzzy Sets and Systems,1993,(54).
  • 5Zadeh I. A, The concept of a linguistic variable and its application to approximate reasoning [J]. Inform Sci, 1975, 8: 199-249.
  • 6Song Q, Chissom B S. Fuzzy time series and its models [J]. Fuzzy Sets System, 1993, 54: 269-277.
  • 7Own C M, Yu P T. Forecasting fuzzy time series on a heuristic high-order model [J]. Cybernet System: Int J, 2005, 36: 705-717.
  • 8Tsaur R C, Yang J C O, Wang H F, Fuzzy relation an analysis in fuzzy time series model [J]. Comput Maht Appl, 2005, 49: 539-548.
  • 9Chen S M, Hsu C C. A new method to forecast enrollments using fuzzy time series [J]. International Journal of Applied Science and Engineering, 2004, (2): 234-244.
  • 10Sun Li. Average-based fuzzy time series models for forecasting Shanghai Compound Index [J]. International Journal of Applied Science and Engineering. 2005, (3): 234-244.

引证文献8

二级引证文献40

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部