期刊文献+

基于智能计算的自动骨龄评估及其与TW3法比较 被引量:5

Automatic bone age assessment based on intelligent algorithms and comparison with TW3 method
下载PDF
导出
摘要 目的寻找新的算法以提高自动化骨龄评估(ABAA)的准确性和实用性。方法建立基于目标的兴趣区(ROD。按照Tanner-Whitehouse(TW3)法将ROI分为RUS(包括尺桡骨及掌指骨)ROI及腕骨ROI。按离子群优化(PSO)法,每个兴趣区提取5项特征(包括大小、形态及融合或比邻状态)输入人工神经网络(ANN)分类器,ANN建立在前馈的多层网络基础上,并以反向传播算法规则训练ANN以分别处理RUS及腕骨特征。约1046份左手及腕的数字X线片被随机分成两部分,一半用以训练ANN,另一半用以ABAA,而之前全部采用TW3法有两名小儿内分泌专家人工判读骨龄。结果不同专家判读的骨龄间比较提示:RUS骨龄的标准差大于腕骨骨龄(4.40和2.42),但二者的变异系数(CV)均为4.0,且均有很高的一致率(95.5%及94.2%),不同判读者间RUS及腕骨骨龄均无显著性差异(P>0.05)。通过比较ABAA与人工判读骨龄的比较发现,RUS骨龄的标准差大于腕骨骨龄。但腕骨骨龄<9岁及RUS骨龄≥9岁者CV很接近,分别为3.0和3.1,而对RUS骨龄<9岁者CV较大,为3.5。本研究中不管是RUS骨龄还是腕骨骨龄,ABAA与人工判读相比均有很高的一致率(97.0%、93.8%与96.5%)并且无显著性差异(P>0.05)。结论PSO对图像分割与特征的提取更为有效和准确。该ANN经训练后能更全面地处理影像特征信息,准确判断骨龄。基于智能算法的ABAA系统成功地应用于骨龄0~18岁所有病例。 Objective To improve the validity, accuracy and practicality of automatic bone age assessment (ABAA) with new algorithms. Methods The concept of object-based ROI was proposed. Thirteen RUS (including radius, ulna and short finger bones) ROIs and seven Carpal ROIs were appointed respectively according to Tanner-Whitehouse (TW3) method. Five features including size, morphologie features and fusional/adjacent stage of each ROI were extracted based on particle swarm optimization (PSO) and input into ANN classifiers. ANNs were built upon feed-forward muhilayer networks and trained with back-propagation algorithm rules to process RUS and Carpal features respectively. About 1046 digital left hand- wrist radiographs were randomly utilized half for training ANNs and the rest for ABAA after manual reading by TW3 method, Results BA comparison between observers indicated that the SD of RUS BA was larger than that of Carpal BA (SD= 4.40, 2.42 respectively), but interestingly, both CVs were 4.0, and both concordance rates were very high (95.5% and 94.2%), and hoth differences between observers were not significant (both P)〉0.05 ). It was found by comparison between results of ABAA and manual readings that RUS BA had larger SDs than Carpal BA between two methods, but the CVs were very similar in the case of Carpal BA〈9 years and RUS BA≥9 years (CV=3.0, 3. 1 respectively), apart from a comparatively larger CV for RUS BA〈9 years (CV=3.5). Both parts of ABAA system, RUS and Carpal, had very high concordance rates (97.0%, 93.8% and 96.5%) and no significant difference compared with manual method (all P〉0.05). Conclusion PSO method made image segmentation and feature extraction more valid and accurate, and the ANN models were sophisticated in processing image information. ABAA system based on intelligent algorithms had been successfully applied to all cases from 0 to 18 years of bone age.
出处 《中国医学影像技术》 CSCD 北大核心 2008年第10期1661-1664,共4页 Chinese Journal of Medical Imaging Technology
基金 973计划(2005CB52507)
关键词 计算机辅助诊断 骨龄评估 颗粒群优化 Tanner-Whitehouse(TW3)法 神经网络模型 Computer assisted diagnosis Bone age assessment Particle swarm optimization Tanner-Whitehouse (TW3) method Neural network model
  • 相关文献

参考文献15

  • 1Greulich WW, Pyle SI. Radiographic atlas of skeletal development of hand wrist. 2nd ed. Stanford: Stanford University Press, 1971.
  • 2Tanner JM, Healy MJR, Goldstein H, et al. Assessment of skeletal maturity and prediction of adult height (TW3 method). 3rd ed. London: WB Saunders, 2001 : 1- 108.
  • 3陈亿霖,蒋田仔,李淑宇,邵伟东,张绍岩,刘丽娟.基于X线影像的骨发育成熟度自动评价系统:研究进展和挑战[J].中国医学影像技术,2004,20(1):143-146. 被引量:12
  • 4Zhang A, Gertych A, Liu BJ. Automatic bone age assessment for young children from newborn to 7-year-old using carpal bones. Comput Med Imaging Graph, 2007,31(4-5):299-310.
  • 5Pietka E, Pospiech S, Gertych A, et al. Integration of computer assisted bone age assessment with clinical PACS. Comput Med Imaging Graph, 2003,27(2) :217-228.
  • 6Zhang A, Cao F, Pietka E, et al. Data mining for average images in a digital hand atlas. Proc SHE Med Imag, 2004,5371:251- 258.
  • 7Kennedy J, Eberhart RC. Particle swarm optimization. Proceedings of IEEE international conference on neural networks. NJ : Piscataway, 1995 : 1942-1948.
  • 8Eberhart RC, Kennedy J. A new optimizer using particle swarm theory. Proceedings of the sixth international symposium on.micromachine and human science. Japan: Nagoya, 1995:39- 43.
  • 9刘钊,刘坚,陈建勋.基于PSO的自动化骨龄评估.第一届国际生物信息与生物医学工程会议.中国:武汉,2007:445-447.
  • 10Bull RK, Edwards PD, Kemp PM, et al. Bone age assessment: a large scale comparison of the Greulich and Pyle, and Tanner and Whitehouse (TW2) methods. Arch Dis Child, 1999,81 (2) : 172- 173.

二级参考文献6

  • 1[7]Bo-Chun Fan, Chi-Wen Hsieh, Tai-Lang Jong, et al. Automatic bone age estimation based on carpal-bone Image-a preliminary report[J]. Chinese Medical Journal (Taipei), 2001,64():203-208.
  • 2[8]Pietka E, McNitt-Gray MF, Kuo ML, et al. Computer-assisted phalangeal analysis in skeletal age assessment[J]. IEEE Transactions on Medical Imaging, 1991,10(4): 616-620.
  • 3[9]Pietka E, Kaabi L, Kuo ML, et al. Feature extraction in carpal-bone analysis[J]. IEEE Transactions on Medical Imaging, 1993,12(1):44-49.
  • 4[10]Pietka E, Gertych A, Pospiech S, et al. Computer-assisted bone age assessment: image preprocessing and epiphyseal/ metaphyseal ROI extraction[J]. IEEE Transactions on Medical Imaging,2001,20(8):715-729.
  • 5[11]Nopola T, Jarvi A, Svedstrom E, et al. Segmenting bones from wristhand radiographs[R].Turku Centre for Computer Science TUCS Technical Report, 2000.
  • 6[12]Efford ND. Knowledge-Based Segmentation and Feature Analysis of Hand-Wrist Radiographs[R]. University of Leeds School of Computer Studies Reseach Report Series, 1994.

共引文献11

同被引文献64

引证文献5

二级引证文献29

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部