期刊文献+

遥感图像融合的非采样Contourlet变换方法 被引量:2

Remotely Sensed Images Fusion Based on Non-subsampled Contourlet Transform
下载PDF
导出
摘要 有效地融合高分辨率全色遥感图像(PAN)和低分辨率多光谱图像(MS),均衡融合结果中的空间细节信息和光谱信息两项特征指标,是多源遥感图像融合技术的难点。为了提高融合后图像的质量,提出了一种基于非采样Contourlet变换(NSCT)的融合方法。由于"非采样Contourlet变换"采用非采样滤波器组实现,具有移不变、高方向性和各向异性的特点,能够较好地弥补"采样的Contourlet变换(CT)"的缺陷,并且解决了小波变换方向性差的问题。实验中,以Landsat TM5图像和SPOT图像进行了算法的验证,并针对传统的直接替换、绝对值选大和局部方差选大等多分辨率融合算法与离散小波变换(DWT)及"采样的Contourlet变换"进行了对比分析,结果表明,本文方法在提高空间信息的同时,可以较好地保持原始多光谱图像中的光谱信息,弥补了"采样的Contourlet变换"在遥感图像融合应用中会导致严重的色彩畸变的缺陷。从而证明了NSCT在遥感图像融合领域是一种有效的多分辨率分解策略,可以被成功的应用到遥感图像融合应用中。 The fusion of multispectral (MS) and panchromatic (PAN) images is the nodus of Remotely Sensed Images Fusion. In order to improve the quality of the fused image, in this paper, a novel fusion strategy based on non-subsampled eontourlet transform (NSCT) is presented. Due to the non-subsampled eontourlet transform (NSCT) is obtained by coupling a non-subsampled pyramid structure with the non-subsampled directional filter bank (DFB), and the non-subsampled contourlet transform (NSCT) is shift-invariant and high directionality, it can remedy the limitation of the subsampled contourlet (CT) transform and solve the low directional problem of discrete wavelet transform (DWT). In the experiment we used the images of Landsat TM5 and SPOT to validate this strategy, and compared with the DWT and CT use the method of direct replace, chose the maximal absolute value and chose the maximal local Variance. The experimental results show that our method is more effective than other methods in improving the quality of image. This also proves that NSCT is an effective strategy in the field of remotely sensed images fusion, and it can be successfully used in the application of remotely sensed images fusion.
出处 《中国图象图形学报》 CSCD 北大核心 2008年第11期2209-2216,共8页 Journal of Image and Graphics
基金 国家自然科学基金项目(60374033) 教育部科学技术研究重点项目(107057) 江苏省高技术研究重大项目(BG2006003)
关键词 非采样CONTOURLET变换 小波变换 遥感图像融合 non-subsampled contourlet transform, wavelet transform, remotely sensed image fusion
  • 相关文献

参考文献14

  • 1Candes E J. Harmonic analysis of neural networks [ J]. Applied and Computational Harmonic Analysis, 1999, 6 ( 2 ) : 197 - 218.
  • 2练秋生,孔令富.冗余轮廓波变换的构造及其在SAR图像降斑中的应用[J].电子与信息学报,2006,28(7):1215-1218. 被引量:10
  • 3Viscito E, Allebach J P. The analysis and design of multidimensional FIR perfect reconstruction filter banks for arbitrary sampling lattices [J]. IEEE Transactions on Circuits and Systems, 1991,38( 1 ): 29-41.
  • 4Donoho D L. Orthonormal Ridgelets and Linear Singularities [ J ]. SIAM Journal on Applied Mathematics, 1998, 31 (5) : 1062 - 1099.
  • 5Candes E J. Ridgelets: Theory and Applications [ D]. Stanford, CA, USA: Department of Statistics, Stanford University, 1998.
  • 6Candes E J, Donoho D L. Curvelets: A Surprisingly Effective Nonadaptive Representation for Objects witch Edges [ M ]. Nashville TN USA : Vanderbilt University Press, 2000 : 105 - 120.
  • 7Do M N, Vetterli M. Contourlets: A Directional Multiresolution Image Representation [ A ]. In: Proceedings of IEEE International Conference on Image Processing [ C ], Rochester, New York, USA, 2002. 357 -360.
  • 8Do M N, Vetterli M. Contourlets and sparse image expansions[ A]. In: Proceedings of International Society for Optical Engineering[ C], San Diego, USA, 2003, 5207:560 - 570.
  • 9Eslami R, Radha H. The contourlet transform for image denoising using cycle-spinning[ A]. In: Proceedings of A Silo Mar Conference on Signals, Systems, and Computers [ C ], Pacific Grove, USA, 2003 : 1982 - 1986.
  • 10Cunha A L, Zhou J, Do M N. The nonsubsampled contourlet transform: theory, Design, and Applications [ J ]. IEEE Transactions on Image Processing, 2006, 15(10) :3089 - 3101.

二级参考文献11

  • 1Argenti F, Alpatone L, Speckle removal from SAR images in the undecimated wavelet domain. IEEE Trans. on Geoscience and Remote Sensing, 2002, 40(1 l): 2363-2374.
  • 2Candes E J. Harmonic analysis of neural networks. Applied and Computational Harmonic Analysis, 1999, 6(2): 197-218.
  • 3Dai Min, Peng Cheng, Chan A K, et al.. Bayesian wavelet shrinkage with edge detection for SAR image despeckling. IEEE Trans. on Geoscience and Remote Sensing, 2004, 42(8):1642-1648.
  • 4Candes E J, Donoho D L. Curvelets: A surprisingly effective nonadaptive representaion for object with edges. In Curves and Surfaces. Saint-Malo: Vanderbilt University Press, 1999:105-121.
  • 5Do M N, Vetterli M. Contourlets and sparse image expansions.Proc. SPIE, 2003, 5207: 560-570.
  • 6Po D D, Do M N. Directional multiscale statistical modeling of images. Proc. SPIE, 2003, 5207: 69-79.
  • 7Viscito E, Allebach J P. The analysis and design of multidimensional FIR perfect reconstruction filter banks for arbitrary sampling lattices. IEEE Trans. on Cir. and Syst., 1991,38(1): 29-41.
  • 8Watsom A B. The cortex transform: Rapid computation of simulated neural images. Computer Vision, Graphics, and Image Processing, 1987, 39(3): 311-327.
  • 9Tay D B H, Kingsbury N G. Flexible design of multidimensional perfect reconstruction FIR 2-band filters using transformation of variables. IEEE Trans. on Image Proc., 1993, 2(4): 466-480.
  • 10Donoho D L, Johhstone I M. Ideal special adaptation by wavelet shrinkage. Biometrika, 1994, 81 (3): 425-455.

共引文献9

同被引文献18

  • 1焦李成,谭山.图像的多尺度几何分析:回顾和展望[J].电子学报,2003,31(z1):1975-1981. 被引量:227
  • 2Mairal J, Bach F, Ponce J, et al. Online learning for matrix fae- torization and sparse coding [ J ]. Journal of Machine Learning Research, 2010, 11(1): 19-60.
  • 3Aharon M, Elad M, Bruckstein A. The K-SVD: an algorithm for designing of overcomplete dictionaries for sparse representation [J]. IEEE Transactions on Signal Processing, 2006, 54( 11 ) : 4311-4322.
  • 4Boureau Y L, Bach F, LeCun Y, et al. Learning mid-level fea- tures for recognition [ C ]//Proceedings of 2010 IEEE Conference on Computer Vision and Pattern Recognition. San Francisco, CA USA: IEEE Computer Society, 2010: 2559-2566.
  • 5Davenport M A, Wakin M B. Analysis of orthogonal matching pursuit using the restricted isometry pl"operty [ J]. IEEE Transac- tions on Information Theory, 2010, 56(9) : 4395-4401.
  • 6Gribonval R, Vandergheynst P. On the exponential convergence of matching pursuits in quasi-incoherent dictionaries [ J ]. IEEE Transactions on Information Theory, 2006, 52( 1 ) : 255-261.
  • 7Xydeas C S, Petrovic V. Objective image fusion performance measure [J]. Electronics Letters, 2000, 36(4): 308-309.
  • 8YANG B, LI S. Multifocus image fusion and restoration with sparse representation[J]. Instrumentation and Measurement, IEEE Transactions on, 2010, 59(4): 884-892.
  • 9YANG B, LI S. Pixel-level image fusion with simukaneous orthogonal matching pursuit[J]. Information Fusion, 2012, 13(1): 10-19.
  • 10Shutao Li, Haitao Yin, Leyuan Fang: Remote Sensing Image Fusion via Sparse Representations Over Learned Dictionaries. IEEE T. Geoscience and Remote Sensing 51(9): 4779-4789 (2013).

引证文献2

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部