期刊文献+

基于改进模糊ISODATA算法的遥感影像非监督聚类研究 被引量:14

Study on the Supervised Classification of Remote Sensing Image Based on a Modified Fuzzy-ISODATA Algorithm
下载PDF
导出
摘要 F-ISODATA是一种有效的遥感图像非监督聚类算法。但是,最优迭代次数很难设定;一般遥感图像的数据量大,若迭代误差限取极小值,分类也很难实现。本文以某次迭代中"合并"和"分裂"都为零为求最优分类数的迭代条件,而不是预先设定迭代次数;取最大和最小隶属度取代每一个隶属度为比对特征值,提高了分类速度和精度;利用等效转换研究隶属度矩阵的迭代误差变化规律,得出变化速度趋于稳定时为求解最优隶属度矩阵的智能迭代控制,减少人为事先干预。最后,进行实验分析,结果显示整个改进的算法提高了分类的智能化,整体效果较好。 The Fuzzy-ISODATA (FISODATA) is an effective non-supervised classification algorithm of remote sensing image. But it is difficult to set optimal number of iteration in advance. The size of RS image usually is large, if the iterative error limiteis set a minimum, then FISODATA is also difficult to operate. In this paper, it is designed that when there is no "merger" or "split" at certain iteration, instead of the iteration time set in advance, the classification number is regarded as the optimal one. The variation trend is studied by equivalent transformation,the optimal membership Matrix is determined intelligently by the membership error variation rate instead of the threshold set in advance. Finally, the experiment result is worked out, the analysis in theory and the experiments indicate the algorithm not only improves the intelligence of the algorithm, but also can get more accurate classification results.
出处 《遥感信息》 CSCD 2008年第5期28-32,共5页 Remote Sensing Information
基金 国家重点基础研究发展计划(973)"对地观测数据-空间信息-地学知识的转化机理"资助项目(2006CB701303) 国家重点基础研究发展计划(973)"下一代互联网信息存储的组织模式和核心技术研究"资助项目(2004CB318206)
关键词 ISODATA 模糊聚类 模糊隶属度 迭代误差限 ISODATA fuzzy clustering membership degree iterative error limit
  • 相关文献

参考文献11

  • 1J. C. Bezdek. Pattern recognition with fuzzy objective function algorithms [M]. NewYork: Plenum, 1981.
  • 2R. Dudaand P. Hart. Pattern classification and scene analysis[M]. NewYork..Wiley, 1973.
  • 3J. C. Bezdek. A physicd interpretation of fazzy ZSODATA[J].IEEE Trans. Syst. Man Cybern. , 1976(SMC-6) :387-390.
  • 4Y. S. Cheungand K. P. Chan. Modified fuzzy ISODATA for the classification of handwritten Chinese characters [J].Int. Conf. Chinese Comput. ,Singapore,1986. 361-364.
  • 5N. R. PalandJ. C. Bezdek. On cluster validity for the fuzzy c-means model[J]. IEEE Trans. Fuzzy Systems, 1995,3 (3) :370-379.
  • 6高新波,裴继红,谢维信.模糊c-均值聚类算法中加权指数m的研究[J].电子学报,2000,28(4):80-83. 被引量:157
  • 7舒宁.应加强多光谱图像理解理论与方法的研究[J].国土资源遥感,1999,11(3):28-30. 被引量:8
  • 8龚衍.基于HDA和MRF的高光谱影像同质区分析[D].武汉大学,2007.
  • 9李雪,舒宁.一种改进的多光谱影像模糊加权聚类方法[J].地理空间信息,2006,4(6):50-52. 被引量:2
  • 10孙家柄.遥感原理与应用[M].武汉大学出版社,2002.

二级参考文献13

共引文献164

同被引文献128

引证文献14

二级引证文献73

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部