摘要
设n≥2,k≥0是两个正整数,并且k+n≠2,F是区域D内的一族亚纯函数,a是一个非零有穷复数,b是一个正数.若对于F中的任意函数f,f的零点重级至少为nk+1,且由(fn(z))(k)=a,有|f(z)|≥b,则F在D内正规.
Let n ≥ 2, k ≥ 0 be two positive integers, and k + n≠ 2. Let F be a family of functions meromorphic in a domain D C C. Let a be a finite non-zero value in C and b be a positive number, all of whose zeros are of multiplicity at least [k/n]+ 1. If each function f E F satisfies | f(z)|≥b whenever (fn(z))(k)=a,then F is normal in D.
出处
《西南大学学报(自然科学版)》
CAS
CSCD
北大核心
2008年第10期48-50,共3页
Journal of Southwest University(Natural Science Edition)
关键词
正规族
亚纯函数
分担值
normal family
meromorphic function
shared value