摘要
In this paper, we define the notion of self-dual graded weak Hopf algebra and self-dual semilattice graded weak Hopf algebra. We give characterization of finite-dimensional such algebras when they are in structually simple forms in the sense of E. L. Green and E. N. Morcos. We also give the definition of self-dual weak Hopf quiver and apply these types of quivers to classify the finite- dimensional self-dual semilattice graded weak Hopf algebras. Finally, we prove partially the conjecture given by N. Andruskiewitsch and H.-J. Schneider in the case of finite-dimensional pointed semilattice graded weak Hopf algebra H when grH is self-dual.
In this paper, we define the notion of self-dual graded weak Hopf algebra and self-dual semilattice graded weak Hopf algebra. We give characterization of finite-dimensional such algebras when they are in structually simple forms in the sense of E. L. Green and E. N. Morcos. We also give the definition of self-dual weak Hopf quiver and apply these types of quivers to classify the finite- dimensional self-dual semilattice graded weak Hopf algebras. Finally, we prove partially the conjecture given by N. Andruskiewitsch and H.-J. Schneider in the case of finite-dimensional pointed semilattice graded weak Hopf algebra H when grH is self-dual.
基金
the Program for New Century Excellent Talents in University (No 04-0522)
the National Natural Science Foundation of China (No.10571153)