期刊文献+

Self-intersecting Geodesics and Entropy of the Geodesic Flow

Self-intersecting Geodesics and Entropy of the Geodesic Flow
原文传递
导出
摘要 Given a symmetric Finsler metric on T^2 whose geodesic flow has zero topological entropy, we show that the lift in the universal covering R^2 →T^2 of any closed geodesic on T^2 must be an embedded curve in R^2. Given a symmetric Finsler metric on T^2 whose geodesic flow has zero topological entropy, we show that the lift in the universal covering R^2 →T^2 of any closed geodesic on T^2 must be an embedded curve in R^2.
出处 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2008年第12期1949-1952,共4页 数学学报(英文版)
基金 NSF grant DMS-0101124 NWO through a visitor's fellowship B 61-581
关键词 geodesic flow Finsler surface zero entropy geodesic flow, Finsler surface, zero entropy
  • 相关文献

参考文献4

  • 1Denvir, J., MacKay, R. S.: Consequences of contractible geodesics on surfaces. Trans. Amer. Math. Soc., 350(11), 4553-4568 (1998)
  • 2Bao, D., Chern, S. S., Shen, Z.: An introduction to Riemann-Finsler geometry, Graduate Texts in Mathematics, vol. 200, Springer-Verlag, New York, 2000
  • 3Matthew, A., Grayson: Shortening embedded curves. Ann. of Math. (2), 129(1), 71-111 (1989)
  • 4Oaks, J.: Singularities and self-intersections of curves evolving on surfaces. Indiana Univ. Math. J., 43 959-981 (1994)

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部