摘要
Given a symmetric Finsler metric on T^2 whose geodesic flow has zero topological entropy, we show that the lift in the universal covering R^2 →T^2 of any closed geodesic on T^2 must be an embedded curve in R^2.
Given a symmetric Finsler metric on T^2 whose geodesic flow has zero topological entropy, we show that the lift in the universal covering R^2 →T^2 of any closed geodesic on T^2 must be an embedded curve in R^2.
基金
NSF grant DMS-0101124
NWO through a visitor's fellowship B 61-581