期刊文献+

基于期望的重要抽样方法研究 被引量:1

下载PDF
导出
摘要 传统的Monte Carlo方法仿真稀有事件需要较长的时间,而重要抽样技术可以有效地缩短仿真时间,提高仿真效率。文章提出一种新的重要抽样实现方法,用来估计仿真模型中的稀有事件的概率;利用期望寻找最优重要抽样分布函数,并与传统的Monte Carlo算法进行比较。仿真结果显示了该方法在估计稀有事件概率方面的有效性。
作者 周泓 邱月
出处 《统计与决策》 CSSCI 北大核心 2008年第21期4-6,共3页 Statistics & Decision
基金 国家自然科学基金资助项目(70531010 70521001) 新世纪优秀人才支持计划资助项目(NCET-04-0175)
  • 相关文献

参考文献9

  • 1大亚湾核电站概率风险分析:大亚湾电站PRA项目组[J].中南工学院学报,1999,13(2):65-75. 被引量:3
  • 2Hammersley, J, M, and D. C, Handscomb. Moute Carlo Methods [M].Methuen, London, 1964.
  • 3M Hsieh. Adaptive Importance Sampling for Rare Event Simulation of Queuing Networks [D]. Ph. D. thesis, Stanford University. California,1997.
  • 4Hong ZHOU,Yue QIU, Yue-qiu WU. An Early Warning System for Loan Risk Assessment Based on Rare Event Simulation[J]. Asia Simulation Conference 2007.
  • 5Kroese, D.P. and R.Y. Rubinstein. The Transform Likelihood Ratio Method for Rare Event Simulation with Heavy Tails [J]. Queueing Systems,2004,(46).
  • 6Hall P. Beck, William D. Davidson. Establishing an Early Warning System Predicting Low Grades in College Students from Survey of Academic Orientations Scores[J]. Research in Higher Education, 2001, 42(6).
  • 7Cohen, I., B. Golany, and A. Shtub. Managing Stochastic Finite Capacity Multi -Project Systems Through the Cross -Entropy Method[J]. Annals of Operations Research,2005,134.
  • 8JA Bucklew, Introduction to Rare Event Simulation [M].Springer, New york,2004.
  • 9周泓,邱月,吴学静.基于重要抽样技术的稀有事件仿真方法[J].系统仿真学报,2007,19(18):4107-4110. 被引量:5

二级参考文献14

  • 1吴淮宁,蔡开元.不确定控制系统概率鲁棒性分析——自适应重要抽样法[J].控制理论与应用,2004,21(5):812-816. 被引量:6
  • 2J S Sadowsky. On the Optimality and Stability of Exponential Twisting in Monte Carlo Simulation [J]. IEEE Transactions on Information Theory (S0018-9448), 1993, 39(1): 119-128.
  • 3Devetsikiotis M, Townsend J K. An Algorithmic Approach to the Optimization of Importance Sampling Parameters in Digital Communication System Simulation [J]. IEEE Transactions on Communications (S0090-6778), 1993, 41(10): 1464-1473.
  • 4Jorge Nocedal, Stephen J Wright. Numerical Optimization [M]. Springer, 1999.
  • 5M Villen-Altamirano, A Martinez-Marron, J Gamo, F Femandez-Cuesta. Enhancement of the Accelerated Simulation Method RESTART by considering Multiple Thresholds[C]//Proceedings 14th International Tele traffic Congress, The fundaaniental role of teletraffic in the evolution of telecomrirunications networks, Ed J Labetoulle, J W Roberts. Elsevier, 1994: 797-810.
  • 6Tito Homem-de-Mello, R Y Rubinstein. Estimation of Rare Event Probabilities Using Cross-Entropy [C]// Proceedings of the 2002 Winter simulation Conference. New York: IEEE, 2002:310-319.
  • 7Glynn P W. Efficiency Improvement Techniques [J]. Annals of Operation Research (S0254-5330), 1994, 53(1): 175-197.
  • 8P W Glynn, D L Iglehart. Importance Sampling for Stochastic Simulations [J]. Management Science (S0025-1909), 1989, 35(11): 1367-1392.
  • 9M Hsieh. Adaptive Importance Sampling for Rare Event Simulation of Queuing Networks [D]. Ph. D. thesis, Stanford University. California, 1997.
  • 10P G Melnik-Melnikov, E S Dekhtyaruk. Rare Events Probabilities Estimation by "Russian Roulette and Splitting "Simulation Technique [J]. Probabilistic Engineering Mechanics (S0266-8920), 2000, 15(2): 125-12.

共引文献6

同被引文献38

引证文献1

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部