期刊文献+

一种快速广义动态约简算法 被引量:2

Fast Generalized Dynamic Reduction Algorithm
下载PDF
导出
摘要 为解决传统算法计算广义动态约简耗时的问题,提出在约简有效性约束条件下的快速算法。通过稳定度阈值的限制,减少F族中需要计算出所有约简的子表的数量,并利用最优稳定度系数过滤掉不可能成为广义动态约简的子表约筒。理论分析和实验表明,快速算法在效率上较传统算法具有显著提高。 To solve the time-consuming problem of calculating generalized dynamic reduction, a fast method based on the validity of reduction is proposed. The algorithm decreases the number of sub-tables, which are calculated by using the stability degree threshold, and filters the reduction of sub-tables that are not to be the generalized dynamic reduction by utilizing the classic stability coefficient. Theoretical analysis and experiment show that the fast method is more effective than the traditional algorithm.
出处 《计算机工程》 CAS CSCD 北大核心 2008年第21期56-58,共3页 Computer Engineering
基金 湖南省自然科学基金项目资助(06JJ20075) 湖南省科技计划基金资助项目(2008FJ3184)
关键词 粗糙集 广义动态约简 约筒有效性 稳定度阈值 rough set generalized dynamic reduction validity of reduction stability degree threshold
  • 相关文献

参考文献6

  • 1Pawlak Z. Rough Set[J]. International Journal of Computer and Information Sciences, 1982, 11(6): 341-356.
  • 2Hu X H, Cercone N. Learning in Relational Database: A rough Set Approach[J]. International Journal of Computational Intelligence, 1995, 11(2): 323-338.
  • 3Bazan J G, Skowron A, Synak R Dynamic Reducts as a Tool for Extracting Laws from Decision Tables in: Methodologies for Intelligent System[C]//Proc, of the 8th International Symposium on ISMIS'94. [S.l.]: Springer-Verlag, 1994: 346-355.
  • 4Bazan J G. A Comparison of Dynamic and Non-dynamic Rough Set Methods for Extracting Laws from Decision Tables[C]//Proc. of Rough Sets in Knowledge Discovery 1: Methodology and Applications. Heidelberg, Germany: Physica-Verlag, 1998: 321-365.
  • 5赵卫东,李旗号.复杂决策表的特征提取方法研究[J].小型微型计算机系统,2002,23(10):1241-1244. 被引量:4
  • 6王加阳,陈松乔,罗安.粗集动态约简研究[J].小型微型计算机系统,2006,27(11):2056-2060. 被引量:13

二级参考文献21

  • 1陈彬,洪家荣,王亚东.最优特征子集选择问题[J].计算机学报,1997,20(2):133-138. 被引量:96
  • 2John G H, Kohavi R , Pfloger K. Irrelevant features and the subset selection problem[C]. In : Mitchell T M ed. Proceeding on Machine Learning94. Morgan Koffmann Publishers,1994,121~129
  • 3Bazan,J. A compasion of dynamic and non-dynamic rough set methods for extracting laws from decision tables[C], In Polkowski and Skowron,(eds) Rough sets in Knowledge Discovery 1:Methodology and Apllications, Physica-Verlag,Heidelberg,1998:321~365
  • 4Nguyen,H S. Regularity analysis and its applications in data mining[D], Warsaw University, Poland:Warsaw,1999
  • 5Dominik Slezak. Attribute set decomposition of decision tables[C]. In: Proceedings of the Fifth European Congress on Intelligent Techniques and Soft Computing (EUFiT97), , Aachen, Germany, Verlag Mainz, 1997,236~240.
  • 6Blaz Zupan, Marko Bohanec, Janez Demsar et al. Learning by discovering concept hierarchies[J], Artificial Intelligence, 1999(109):211~242
  • 7Nguyen,S H., Nguyen,T T., Polkowski,L et al. Decision rules for large data tables[C] . In:Proceedings of Symposium on Modelling, Analysis and Simulation, France,Lille, 1996:942~947
  • 8Nguyen,H S., Nguyen,S H., Skowron,A. Searching for features defined by hyperplanes[C]. In Z W Ras, M Michalewicz(eds). Proc. of the IX International Symposium Methodologies for Information Systems, Polang,Kopane,1996
  • 9Rudy Setiono. Generating concise and accurate classification rules for breast cancer diagnosis[J]. Artificial Intelligence in Medicine. 2000,18:205~219
  • 10赵卫东 李旗号.示例学习的最优概念获取[J].计算机研究与发展,2001,38.

共引文献15

同被引文献16

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部