期刊文献+

基于极大后验概率的高容错码速调整恢复算法 被引量:2

High Error-Resilient Justification Recovery Algorithm Based on Maximum Posteriori Probability
下载PDF
导出
摘要 针对高误码信道环境下的数字分接中的码速恢复问题,提出一种高容错码速恢复算法——高容错预测算法。该算法利用二次群码速调整的先验统计知识以及码速调整指示码的后验反馈信息,对当前帧的码速调整的预测放在一条连续预测比特序列中考虑,预测局部最优的序列,实现码速恢复的高容错性。仿真结果表明,HERP算法在预测准确性上比国际电信联盟推荐的多数判决法提高近10倍。 To solve the problem of justification recovery in digital demultiplexing stage in the environment of high error channel, a high error-resilient of justification recovery algorithm, High Error-Resilient Prediction(HERP) algorithm is proposed in this paper. HERP algorithm makes use of the justification statistics knowledge of 2-ary digital group and the feedback information from justification indicating code. This algorithm considers the justification prediction of the current frame in a continuous prediction sequence, which can lead to a global optimal prediction sequence and implement high error-resilient in justification. The simulation experiment shows HERP algorithm has improved nearly by ten times in the aspect of error-resilient and accuracy compared with most decision algorithm which is recommended bv ITU.
出处 《计算机工程》 CAS CSCD 北大核心 2008年第21期106-108,123,共4页 Computer Engineering
基金 国家自然科学基金资助重大项目(90204013) 国家自然科学基金资助项目(60673082)
关键词 码速调整 数字分接 多数判决法 高容错预测算法 justification digital demultiplexing most decision algorithm High Error-Resilient Prediction(HERP) algorithm
  • 相关文献

参考文献4

  • 1徐占成.CCITT数字网路——传输系统和复用设备建议G.703-G956[M].北京:人民邮电出版社,1987.
  • 2Viterbi A J. Error Bounds for Convolutional Codes and an Asymptotically Optimum Decoding Algorithm[J]. IEEE Trans. on Inform Theory, 1967, 13(2): 260-269.
  • 3Forney G D. The Viterbi Algorithm[J]. Proceedings of the IEEE, 1973, 61(3): 268-278.
  • 4Ryan W E. An Introduction to LDPC Codes[M]//Vasic B. CRC Handbook for Coding and Signal Processing for Recording Systems. Cambridge, UK: Cambridge University Press, 2003.

同被引文献20

  • 1林忠文,邹艳,陆佩忠.多路信源联合Viterbi译码[J].电信技术研究,2007(1):1-6. 被引量:2
  • 2CCITT.数字网路-传输系统和复用设备建议G.700-G.956[M].北京:人民邮电出版社,1987:57-96.
  • 3C. E. Shannon. A mathematical theory of communication.Bell Syst. Tech. J., 1948, 27: 379-423.
  • 4J. Hagenauer. Source-controlled channel decoding.IEEE Trans. Commun., 1995, 43(9).
  • 5M. Adrat, J.-M. Picard and P. Vary. Softbit-sourcedecoding based on the turbo-principle[C]. IEEEVeh. Tech. Conf., 2001, 4: 2252-2256.
  • 6M. Jeanne, J. C. Carlach, and P. Siohan. Jointsource-channel decoding of variable-length codesfor convolutional codes and turbo codes[J]. IEEETrans. Commun., 2005, 53(1): 10-15.
  • 7Z. Jaoua, A. Zergainoh-Mokraoui, P. Duhamel.Robust transmission of html files: iterative jointsource-channel decoding of Lempel Ziv-77codes[C]. IEEE International Conference onAcoustics, Speech and Signal Processing (ICASSP),2008: 2993-2996.
  • 8Dumitrescu S, Wu X. On the complexity of jointsource-channel decoding of Markov sequencesover memoryless channels[J]. IEEE Trans. onCommon., 2008, 56: 877-885.
  • 9Jaspar X, Guillemot C, Vandendorpe L. Jointsource-channel turbo techniques for discrete-valued sources: From theory to practice[J].Proceeding of the IEEE, 2007, 95(6): 1345-1361.
  • 10Xiang Weiwei, Lu Peizhong. Joint source channelsoft decoding using dynamic redundancy detection[C].International Conference on WirelessCommunications Networks Security and TrustedComputing (NSWCTC), 2009: 576-579.

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部