期刊文献+

基于动态分类的Markov用户浏览预测模型 被引量:1

Markov User Navigation Prediction Model Based on Dynamic Sorting
下载PDF
导出
摘要 针对多Markov链用户浏览预测模型分类算法的时间复杂度过高问题,提出一种基于动态分类的Markov用户浏览预测模型。该模型通过学习提取用户浏览特征,利用这些特征对用户浏览路径进行分类,实现预测并动态更新用户浏览特征。实验结果表明,该模型可明显降低用户浏览路径预测的时间,并得到较为准确的预测结果。 Aiming at the algorithm of Multi-Markov model has higher time complexity, this paper proposes a new approach to model user navigation sequences based on dynamic sorting Markov model. This model gets users navigation characters and uses the characters to sort users and predict users' navigation pattern. In particular, this model can shorten the time of prediction obviously and the result is more accurate in prediction.
出处 《计算机工程》 CAS CSCD 北大核心 2008年第21期166-168,共3页 Computer Engineering
基金 燕山大学博士基金资助项目(B83)
关键词 浏览预测 用户分类 MARKOV模型 navigation prediction users sorting Markov model
  • 相关文献

参考文献5

  • 1Zuckerman I, Albrecht D, Nicholson A. Predicting User's Requests on the www[C]//Proc, of the 7th International Conference on User Modeling. New York, USA: Springer, 1999: 275-284.
  • 2Borges J, Levene M. Data Mining of User Navigation Patterns[C]// Proc. of the 1999 KDD Workshop on Web Mining. San Diego, California, USA: Springer, 1999:92-111.
  • 3Borges J, Levene M. A Heuristic to Capture Longer User Web Navigation Patterns[C]//Proc. of the 1 st International Conference on Electronic Commerce and Web Technologies. Greenwich, U.K: [s. n.], 2000-09: 155-164.
  • 4王实,高文,李锦涛,谢辉.路径聚类:在Web站点中的知识发现[J].计算机研究与发展,2001,38(4):482-486. 被引量:59
  • 5邢永康,马少平.多Markov链用户浏览预测模型[J].计算机学报,2003,26(11):1510-1517. 被引量:45

二级参考文献10

  • 1Yan T,Proc of the 5th Int World Wide Web Conf,1996年,27页
  • 2史忠植.知识发现[M].北京:清华大学出版社,2001..
  • 3Lawrence S, Giles C L. Accessibility of information on the Web. Nature, 1999, 400(7): 107-109
  • 4Zuckerman I, Albrecht D, Nicholson A. Predicting user′s requests on the WWW. In: Proceedings of the 7th International Conference on User Modeling, New York: Springer, 1999.275~284
  • 5Borges J, Levene M. Data mining of user navigation patterns. In: Proceedings of the 1999 KDD Workshop on Web Mining, CA: Springer-Verlag Press, 1999.92~111
  • 6Sarukkai R. Link prediction and path Analysis using Markov chains. In: Proceedings of the 9th world wide web conference, Amsterdam, Netherlands, 2000. http://www9.org/w9cdrom/68/68.html
  • 7Fu Y, Sandhu K, Shih M Y. Clustering of Web users based on access patterns. In: Proceedings of the 1999 KDD Workshop on Web Mining, San Diego, CA, 1999
  • 8Tak W Y, Matthew J, Hector G M. From user access pattern to dynamic hypertext linking. In: Proceedings of the 5th International World Wide Web conference, Paris France, 1996
  • 9Cooper G F, Herskovitz E. A Bayesian method for the induction of probabilistic networks from data. Machine Learning, 1992, 9: 309~347
  • 10Heckerman D,Geiger D,Chickering M. Learning Bayesian networks: The combination of knowledge and statistical data. Machine Learning, 1995, 20: 197~243

共引文献97

同被引文献14

引证文献1

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部