期刊文献+

基于代价敏感贝叶斯网络的烟叶感官质量评价 被引量:1

Tobacco Smoking Quality Evaluation Based on Cost-sensitive Bayesian Networks
下载PDF
导出
摘要 贝叶斯网络在判别分类中具有很多优势,应用贝叶斯网络对烟叶感官质量进行预测和评价。一些烟叶质量指标的误分类代价不同,提出一种代价敏感贝叶斯网络。通过生成准则学习代价敏感贝叶斯网络的结构,进行代价敏感参数估计。应用代价敏感贝叶斯网络对一组烟叶进行感官质量预测和评价,结果表明了代价敏感贝叶斯网络在烟叶质量感官评价中的有效性。 Bayesian networks have many merits which are applied in data mine, tobacco smoking quality is predicted and evaluated using Bayesian networks. But some important smoking quality has unequal classification cost. Cost-sensitivity Bayesian network is proposed accordingly. Structure of the cost-sensitivity Bayesian networks is learned using generative criterion. Then parameters of the cost-sensitivity Bayesian networks are evaluated based on cost-sensitivity loss function. A Bayesian network is learned to form a tobacco smoking quality dataset. Experimental results show that cost-sensitivity Bayesian network is feasible to evaluate tobacco smoking quality.
出处 《计算机工程》 CAS CSCD 北大核心 2008年第21期187-189,共3页 Computer Engineering
基金 高等学校博士学科点专项科研基金资助项目(20059998019)
关键词 贝叶斯网络 代价敏感损失 感官质量评价 Bayesian networks cost-sensitive loss smoking quality evaluation
  • 相关文献

参考文献11

  • 1王允白,王宝华,郭承芳,王凤龙,周健.影响烤烟评吸质量的主要化学成分研究[J].中国农业科学,1998,31(1):89-91. 被引量:209
  • 2闫克玉,王建民,屈剑波,李兴波.河南烤烟评吸质量与主要理化指标的相关分析[J].烟草科技,2001,34(10):5-9. 被引量:186
  • 3Munoz A M. Sensory Evaluation in Quality Control: An Overview, New Developments and Future Opportunities[J]. Food Quality and Preference, 2002, 13(6): 329-339.
  • 4郭骏,潘申,胡小建.基于灰度形态学的烟叶图像边缘检测[J].计算机工程,2007,33(21):163-165. 被引量:20
  • 5Chickering D. Learning Equivalence Classes of Bayesian Networks Structures[C]//Proceedings of the 12th Conference on Uncertainty in Artificial Intelligence. San Francisco, USA: Morgan Kaufmann, 1996.
  • 6Grossman D, Domingos E Learning Bayesian Network Cclassifiers By Maximizing Conditional Likelihood[C]//Proceedings of ACM International Conference. Banff, Canada: ACM Press, 2004: 46-53.
  • 7Pemkopf F. Bayesian Network Classifiers Versus Selective k-NN Classifier[J]. Pattern Recognition, 2005, 38(1): 1-10.
  • 8Greiner R. Structural Extension to Logistic Regression- discriminative Parameter Learning of Belief Net Classifiers.pdf [J]. Machine Learning, 2005, 59(3): 297-322.
  • 9Elkan C. The Foundation of Cost Sensitive Learning[C]// Proceedings of the 17th International Joint Conference on Atificial Intelligence. Seattle, Washington, USA: AAAI Press, 2001 : 973-978.
  • 10凌晓峰,SHENG Victor S..代价敏感分类器的比较研究(英文)[J].计算机学报,2007,30(8):1203-1212. 被引量:35

二级参考文献51

共引文献395

同被引文献24

引证文献1

二级引证文献39

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部