期刊文献+

The Factorization of Adjoint Polynomials of E^G(i)-class Graphs and Chromatically Equivalence Analysis 被引量:15

The Factorization of Adjoint Polynomials of E^G(i)-class Graphs and Chromatically Equivalence Analysis
下载PDF
导出
摘要 Let Sn be the star with n vertices, and let G be any connected graph with p vertices. We denote by Eτp+(r-1)^G(i) the graph obtained from Sr and rG by coinciding the i-th vertex of G with the vertex of degree r - 1 of S,, while the i-th vertex of each component of (r - 1)G be adjacented to r - 1 vertices of degree 1 of St, respectively. By applying the properties of adjoint polynomials, We prove that factorization theorem of adjoint polynomials of kinds of graphs Eτp+(r-1)^G(i)∪(r - 1)K1 (1 ≤i≤p). Furthermore, we obtain structure characteristics of chromatically equivalent graphs of their complements.
出处 《Chinese Quarterly Journal of Mathematics》 CSCD 北大核心 2008年第3期376-383,共8页 数学季刊(英文版)
基金 the NSFC(10761008)
  • 相关文献

参考文献3

二级参考文献1

  • 1K. M. Koh,K. L. Teo. The search for chromatically unique graphs[J] 1990,Graphs and Combinatorics(3):259~285

共引文献45

同被引文献96

引证文献15

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部