摘要
针对速度合成孔径雷达(VSAR)地面运动目标检测和定位,给出参数化VSAR的若干研究进展。首先,建立由目标、多普勒分布式杂波和噪声组成的参数化VSAR统计信号模型。其次,提出自适应最优处理实现运动目标检测,提高了非均匀杂波背景中的目标检测性能。第三,基于最大似然方法和克拉美-罗界分析参数估计和目标定位的极限性能。第四,讨论基于多视处理对目标检测和定位可能的性能改善。最后,数值仿真结果证明了参数化VSAR在运动目标检测和定位方面的有效性和优越性能。
This paper gives some research developments in the moving target detection and location based on parametric velocity synthetic aperture radar(VSAR). At first, the parametric statistical signal rood el is established for VSAR sampling vector, by decomposing it into target, Doppler-distributed clutter and noise. Second, the adaptive implementation of optimum processing is presented to improve the target detection performance in non-homogenous clutter background. Third, the limited performance of model parameters estimation and target location is analyzed based on the maximum likelihood methods and Cramer-Rao bound. Fourth, the possible performance improvements are discussed based on multi-look processing. Finally, the numerical experiments are provided to demonstrate the effectiveness of the parametric VSAR in moving target detection and location.
出处
《雷达科学与技术》
2008年第5期323-333,共11页
Radar Science and Technology
基金
国家自然科学基金(No.60502012)
部委预研基金(No.9140A07051208JW0111)
航天支撑基金(No.J04-2007047)
教育部科技创新工程重大项目培育基金(No.706004)
关键词
速度合成孔径雷达
自适应最优处理
最大似然
克拉关一罗界
多视处理
velocity synthetic aperture radar(VSAR)
adaptive implementation of optimum processing (AIOP)
maximum likelihood
Cramer-Rao bound(CRB)
multi-look processing