期刊文献+

基于零空间最大距离的高光谱图像端元提取算法 被引量:4

下载PDF
导出
摘要 端元提取是高光谱图像分析中的一项重要而具有挑战性的任务,它是解决高光谱图像混合像元分解最关键的步骤.文中给出了基于零空间的距离计算方法,在此基础上提出了零空间最大距离算法快速地提取端元.利用零空间与端元所张子空间之间正交补的关系,在数学上严格证明了当数据完全符合单形体条件时,算法能够准确地提取所有的端元,为基于最大距离的端元提取提供了重要的理论依据.算法通过了真实高光谱图像的检验,实验结果表明,零空间最大距离算法具有较好的端元提取效果.
出处 《自然科学进展》 北大核心 2008年第11期1341-1345,共5页
基金 国家自然科学基金资助项目(批准号:40571113)
  • 相关文献

参考文献15

  • 1Gary A, Shaw Gary A, Burke Hsiao-hua K. Spectral imaging for remote sensing. Lincoln Laboratory Journal, 2003, 14(1) : 3--28
  • 2Chein Chang I. Hyperspectral Data Exploitation: Theory and Applications. New Jersey: Wiley Interseience Press, 2007, 1-- 19
  • 3Keshava N. A survey of spectral unmixing algorithms, Lincoln Laboratory Journal, 2003, 14(1): 55--58
  • 4Keshava N, Mustard JF. Spectral unmixing. IEEE Signal Processing Magazine, 2002, 19(1) : 44--57
  • 5Boardman JW, Kruse FA, Green RO. Mapping target signatures via partial unmixing of AVIRIS data. In: Fifth JPL Airborne Earth Science Workshop. Pasadena, 1995, CA: JPL, 1995, 23--26
  • 6Winter ME. N-FINDR: An algorithm for fast autonomous spectral endmember determination in hyperspectral data. In: SPIE Imaging Spectrometry V. San Diego CA, 1999. Washington: SPLE Pub, 1999, 266--275
  • 7Nascimento JMP, Dias JMB. Vertex component analysis: A fast algorithm to unmix hyperspectral data. IEEE Trans Geosci Remote Sensing, 2005, 43:898--910
  • 8Bajorski P. Simplex projection methods for selection of endmembets in hyperspectral imagery. In: IEEE International Geoscience and Remote Sensing Symposium. Anchorage Alaska, 2004.USA: IEEE Press, 2004, 3207--3210
  • 9Winter ME. A proof of the N-FINDR algorithm for the automated detection of endmembers in a hyperspectral image. In: Proceedings of SPIE 5425. Orlando, FL, 2004. Bellingham: SPIE, 2004, 31--41
  • 10耿修瑞,赵永超,周冠华.一种利用单形体体积自动提取高光谱图像端元的算法[J].自然科学进展,2006,16(9):1196-1200. 被引量:14

二级参考文献8

  • 1耿修瑞,童庆禧,郑兰芬.一种基于端元投影向量的高光谱图像地物提取算法[J].自然科学进展,2005,15(4):509-512. 被引量:6
  • 2Boardman J W, et al. Automating spectral unmixing of AVIRIS data using convex geometry concepts. In: 4th Annual JPL Airborne Geoscince workshop. JPL Pub. 1993. 26(1): 11-14
  • 3Theiler J, et al. Using blocks of skewers for faster computation of pixel purity index. In: SPIE Int Conf Optical Science and Technology, Washington: SPIE Pub. 2000. 5-10
  • 4Bowles J, et al. Use of filter vectors in hyperspectral data analysis. In : Proc SPIE Infrared Spaceborne Remote Sensing Ⅲ,Washingon: SPIE Pub. 1995, 148-157
  • 5Bateson C A. A tool for manual endmember selection and spectralunmixing. In. Summaries of the V JPL Airborne Earth Science Workshop, Pasadena, CA, 1993.6
  • 6Staenz K, et al. ISDAS-A system for processing/analyzing hyperspectral data. Can J Remote Sens, 1998, 24:99-113
  • 7Resmini R G, et al. Mineral mapping with Hyperspectral Digital Imagery Collection Experiment (HYDICE) sensor data at cuprite,Nevada, USA. Int J Remote .Sensing, 1997, 18:1553-1570
  • 8Winter M E. N-FINDR: An algorithm for fast autonomous spectral end member determination in hyperspectral data. In:Proc SPIE Imaging Spectrometry V, Washingon: SPIE Pub 1999, 266-275

共引文献13

同被引文献134

引证文献4

二级引证文献37

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部