摘要
A laser beam propagating through turbulence experiences random amplitude and phase fluctuations, which can severely degrade the performance of free space optical communication systems. It this letter, time diversity is demonstrated as a technique which can decrease turbulence influence. Statistically, laser propagation along an atmospheric path is uncorrelated with an earlier-time path for a time interval greater than the atmospheric turbulence correlation time. To estimate time diversity system performance, a 2.2-km optical link is set up for comparing the fade probability of a system using time diversity with a system not using time diversity. The experimental results obtained under different turbulence conditions are shown which are in good agreement with the theory.
A laser beam propagating through turbulence experiences random amplitude and phase fluctuations, which can severely degrade the performance of free space optical communication systems. It this letter, time diversity is demonstrated as a technique which can decrease turbulence influence. Statistically, laser propagation along an atmospheric path is uncorrelated with an earlier-time path for a time interval greater than the atmospheric turbulence correlation time. To estimate time diversity system performance, a 2.2-km optical link is set up for comparing the fade probability of a system using time diversity with a system not using time diversity. The experimental results obtained under different turbulence conditions are shown which are in good agreement with the theory.
基金
supported by the National Natural Science Foundation of China under Grant No.10477014.