摘要
讨论T(M,D)是整自仿Tile集D的特征,为Jian-Lin Li的一个定理给出了新的证明方法,其中M∈Mn(Z)是扩张整矩阵且|det(M)|=|D|=p是素数,pZn■M2(Zn)。证明了若D■M(Zn),则D是Zn/M(Zn)的一个完备剩余系;若D■M(Zn),则存在正整数r,使得D=Mr,其中是Zn/M(Zn)的一个完备剩余系。
To discuss the characterization of digit D when the attractor T(M,D) of the iterated function system { Фd(x) = M^-1 (x + d) | d∈D is a integral self-affine tile,where M ∈ (Mn (Z) is an expanding with |det(M) | = |D| = p a prime andpZ" M^2 ( Z^n ). And a new proof is provided to a theorem of Jian-lin Li. It is proved that if D M ( Z^n ), then D is a complete set coset representatives of Z^n/M ( Z^n ), else if D M ( Z^n ), then there exists a positive integer r such that D = MD, where D is a complete set coset representatives of Z^n/M(Z^n).
出处
《云南师范大学学报(自然科学版)》
2008年第6期4-7,共4页
Journal of Yunnan Normal University:Natural Sciences Edition
基金
国家自然科学基金资助项目(10571113)