期刊文献+

关于整自仿Tile的一个注记

A Note on Integral Self-affine Tiles
下载PDF
导出
摘要 讨论T(M,D)是整自仿Tile集D的特征,为Jian-Lin Li的一个定理给出了新的证明方法,其中M∈Mn(Z)是扩张整矩阵且|det(M)|=|D|=p是素数,pZn■M2(Zn)。证明了若D■M(Zn),则D是Zn/M(Zn)的一个完备剩余系;若D■M(Zn),则存在正整数r,使得D=Mr,其中是Zn/M(Zn)的一个完备剩余系。 To discuss the characterization of digit D when the attractor T(M,D) of the iterated function system { Фd(x) = M^-1 (x + d) | d∈D is a integral self-affine tile,where M ∈ (Mn (Z) is an expanding with |det(M) | = |D| = p a prime andpZ" M^2 ( Z^n ). And a new proof is provided to a theorem of Jian-lin Li. It is proved that if D M ( Z^n ), then D is a complete set coset representatives of Z^n/M ( Z^n ), else if D M ( Z^n ), then there exists a positive integer r such that D = MD, where D is a complete set coset representatives of Z^n/M(Z^n).
作者 沈兴灿
出处 《云南师范大学学报(自然科学版)》 2008年第6期4-7,共4页 Journal of Yunnan Normal University:Natural Sciences Edition
基金 国家自然科学基金资助项目(10571113)
关键词 整自仿Tile 迭代函数系 digit集 Integral selfoaffine tile Iterated function Digit set
  • 相关文献

参考文献7

  • 1R. Kenyon : Self-replicating tilings [ J ]. in: Symbolic Dynamics and Its Applications, ( ed. by P. Waiters ), Contemporary Math. 1992,135:239 - 263.
  • 2J. C. Lagarias, Y. Wang: Integral self-affine tiles in R^n 1. Standard and nonstandard digit sets [ J ] . J. London Math. Soc. 1996,54 : 161 - 179.
  • 3Y. Wang: Self-affine tiles, in: Advances in Wavelets, K. S Lau (ed) [ J ]. Springer, Singapore, 1999 : 261 - 282.
  • 4G. Bandt : Self-similar sets 5. Integer matrices and fractal tilings of R^n [ J ]. Proc. Amer. Math. Soc. 1991,112:549 - 562.
  • 5Jian - Lin Li : Digit sets of integral self-affine tiles with prime determinant [ J ]. Studia Mathematica, 2006,177 (2) : 183 - 194.
  • 6Xing Gang He, Ka-Sing Lau : Characterization of tile digit sets with prime determinants [ J ]. Appl. Comput. Harmon. Anal. 2004,16 : 159 - 173.
  • 7A. Vince : Replicating tessellations[ J]. SIAM J. Discrete Math. 1993,6:501 - 521.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部