期刊文献+

美式期权定价问题的变网格差分方法 被引量:3

THE DIFFERENCE METHODS WITH VARIABLE MESH FOR AMERICAN OPTION PRICING
原文传递
导出
摘要 本文提出一种求解美式期权定价自由边值问题的变网格差分方法.通过建立一个自由边界所满足的方程,利用变网格技术可同时求出期权的差分解和最佳执行边界.本文分别讨论了显式和隐式变网格差分格式,并给出了差分解的收敛性和稳定性分析.数值实验表明本文算法是一个非常有效的期权定价算法. In this paper, the difference methods with variable meshes are proposed for the Amer- ican option pricing problems in the free boundary value form. By means of an equation derived for the free boundary, the option values and the optimal exercise boundary can be computed simultaneously by using the variable mesh technique. Both explicit and implicit difference schemes are discussed, and the stability and convergence are analyzed. Numerical experiments show that the new algorithm is very efficient for option pricing problems.
作者 张铁 祝丹梅
机构地区 东北大学数学系
出处 《计算数学》 CSCD 北大核心 2008年第4期379-387,共9页 Mathematica Numerica Sinica
基金 国家自然科学基金资助项目(No.10771031)
关键词 美式期权定价 自由边值问题 变网格差分算法 稳定和收敛性 数值计算 American option pricing, free boundary problem, variable meshes difference scheme, stability and convergence, numerical computation
  • 相关文献

参考文献10

  • 1Black F, Scholes M. The pricing of options and corporate liabilities[J]. Journal of Politics and Economics, 1973, 81: 637-659.
  • 2Wilmott P, Dewynne J and Howison S. Option Pricing: Mathematical Model and Computation, Oxford Financial Press, Oxford, 1995.
  • 3Broadie M and Detemple J. American option valuation: new bounds, approximations, and a comparison of existing methods[J]. Review of Financial Studies, 1996, 9: 1211-1250.
  • 4Allegretto W, Barone-Adesi G and Elliott R J. Numerical evaluation of the critical price and American options[J]. European Journal of Finance, 1995, 1: 69-78.
  • 5Barone-Adesi S and Whaley R E. Efficient analytic approximation of American option values[J]. Journal of Finance, 1987, 42: 301-320.
  • 6Amin K and Khanna A. Convergence of American option values from discrete to continuous time financial models[J]. Mathematical Finance, 1994, 4: 289-304.
  • 7张铁.美式期权定价问题的数值方法[J].应用数学学报,2002,25(1):113-122. 被引量:43
  • 8McKean H P. A free boundary problem for the heat equation arising from a problem in mathematical economics[J]. Industrial Management Review, 1965, 6: 32-39.
  • 9Merton R C. Theory of rational option pricing[J]. Bell Journal of Economics and Management Science, 1973, 4: 141-183.
  • 10Kwok Y K. Mathematical Models of Financial Derivatives, Springer-Verlag, Berlin, 1998.

共引文献42

同被引文献38

  • 1F BLACK, M SCHOLES. The pricing of options and corpo- rate liabilites[J]. Journal of Political Economy. 1973, 81 (3)637- 654.
  • 2M M CHAWLA, M A A ZANAIDI, D J EVANS. General- ized trapezoidal formulas for the Black-Scholes equation of op tion pricing [J]. Compute Math. 2003,12(1) : 1521 - 1526.
  • 3C VAZQUEZ. An upwind numerical approach for an American and European option pricing model[J]. Applied Mathematics and Computation. 1998,97(9) :273-286.
  • 4K S CRUMP. Numerical inversion of Laplace transform using Fourier series approximation[J]. Assoc Comput Mach, 1976, 23(5) :89-96.
  • 5G HONIG, U HIRDES. A method for the numerical inversion of Laplace transform[J]. Journal of Computation and Applied Mathematics. 1984,10(7) : 113- 132.
  • 6R MALLIER, G ALOBAIDI. Laplace transforms and American options[J]. Applied Math Finance, 2000,7(4) 241-256.
  • 7F DURBIN. Numerical inversion of Laplace transforms:an ef ficient improvement to Dubner and Abate's method[J]. The Compute Journal. 1974,17(4) :371-376.
  • 8F R D HOOG, J H KNIGHT, A N STOKES. An improved method for numerical inversion of Laplace transforms, SIAM [J]. Sci. Statist. Comput. 1982,3(2):357-366.
  • 9L HYOSEOP, S DONGWOO. Laplace transformation method for Black-Scholes[J]. Internation Journal of Numerical Analysis and Modeling. 2009,6 (4) : 1 - 17.
  • 10A TAGLIANI, M MILEV. Laplace transform and finite difference methods for Black-Scholes equation [J]. Applied Mathematics and Computation. 2013,220(6) :649-658.

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部