期刊文献+

一类无穷阶退化抛物方程解的存在性

Existence of Solutions for a Class of Infinitely Degenerate Parabolic Equations
原文传递
导出
摘要 设X=(X1…,Xm)是一组无穷阶退化向量场,△x=∑mj=1Xj*Xj,其中Xj*j是Xj形式自伴算子.运用不动点理论得到抛物方程ut=△xu+ulog|u|解的存在性. Let X = (X1,..., Xm) be an infinitely degenerate system of vector fields, m , △x=∑mj=1Xj*Xj, where Xj* is the formal adjoint of Xj. By employing the fixed point theorem, we obtain the existence of solutions to the degenerate parabolic equation ut =△xu+ulog|u|.
作者 李珂 陈化
出处 《数学学报(中文版)》 SCIE CSCD 北大核心 2008年第6期1089-1096,共8页 Acta Mathematica Sinica:Chinese Series
基金 国家自然科学基金资助项目(10261002,10271023)
关键词 退化抛物方程 对数SOBOLEV不等式 Hormander条件 degenerate parabolic equations logarithmic Sobolev inequality Hormander conditions
  • 相关文献

参考文献6

  • 1Kohn J. J., Hypoellipticity at points of infinite type, Analysis, geometry, number theory: the mathematics of Leon Ehrenpreis (Philadelphia, 1998), Contemp. Math., 2000, 251: 393-398.
  • 2Morimoto Y., Morimoto T., The positivity of Schrodinger operators and the hypoellipticity of second order degenerate elliptic operators, Bull. Sci. Math., 1997, 121: 507-547.
  • 3Morimoto Y., Morika T., Hypoellipticity for elliptic operators with infinite degeneracy, Partial Differential Equations and Their Applications, Chen Hua and L. Rodino, eds., World Sci. Publishing, River Edge, NJ, 1999: 240-259.
  • 4Morimoto Y., Xu C. J., Logarithmic Sobolev inequality and semi-linear Dirichlet problems for infinitely degenerate elliptic operators, Asterisque, 2003, 284:245 264.
  • 5Evans L. C., Partial difference equations, A. M. S. Press, 2002: 349-358.
  • 6Stein E. M., Note on the class L logL, Studia Math., 1969, 32: 305-310.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部