期刊文献+

Hilbert空间中g-Parseval框架的一些性质 被引量:9

Some Properties of g-Parseval Frames in Hilbert Spaces
原文传递
导出
摘要 在Hilbert空间中讨论g-Parseval框架的一些性质,得到g-Parseval框架的一些恒等式和不等式. We discuss some properties of the g-Parseval frames in Hilbert spaces and obtain some identities and inequalities of the g-Parseval frames in Hilbert spaces.
出处 《数学学报(中文版)》 SCIE CSCD 北大核心 2008年第6期1143-1150,共8页 Acta Mathematica Sinica:Chinese Series
基金 国家自然科学基金(10571145) 福建省自然科学基金项目(Z0511013) 省教育厅基金项目(JB04038)
关键词 G-框架 g-Parseval框架 g-标准正交基 g-frame g-Parseval frame g-orthonormal basis
  • 相关文献

参考文献17

  • 1Duffin R. J., Schaeffer A. C., A class of nonharmonic Fourier series, Trans. Math. Soc., 1952, 72: 341-366.
  • 2Daubechies I., Grossmann A., Meyer Y., Painless nonorthogonal expansions, J. Math. Phys., 1986, 27: 271-1283.
  • 3Casazza P. G., The art of frame theory, Taiwan Residents J. of Math., 2000, 4(2): 129-201.
  • 4Christensen O., An introduction to frames and Riesz bases, Boston: Birkhauser, 2003.
  • 5Yang D. Y., zhou x. w., Yuan Z. Z., Frame wavelets with compact supports for L^2(Rn), Acta Mathematica Sinica, English Series, 2007, 23(2): 349-356.
  • 6Zhu Y. C., q-Besselian frames in Banach spaces, Acta Mathematica Sinica, English Series, 2007, 23(9): 1707-1718.
  • 7Li C. Y., Cao H. X., Xd frames and Riesz bases for a Banach space, Acta Mathematica Sinica, Chinese Series, 2006, 49(6): 1361-1366.
  • 8Mallat S., A wavelet tour of signal processing (Second Edition), San Diego: Academic Press, 2000.
  • 9Feichtinger H. G., Grochenig K., Theory and practice of irregular sampling, in: J. J. Benedetto, M. Frazier (Eds.), Wavelets: Mathematics and Applications, Boca Raton: CRC Press. 1994, 305-363.
  • 10Dudey Ward N. E., Partington J. R., A construction of rational wavelets and frames in Hardy-Sobolev space with applications to system modelling, SIAM J. Control Optim., 1998, 36:654-679.

同被引文献68

  • 1XIAO XiangChun & ZENG XiaoMing Department of Mathematics,Xiamen University,Xiamen 361005,China.Some equalities and inequalities of g-continuous frames[J].Science China Mathematics,2010,53(10):2621-2632. 被引量:9
  • 2丁明玲,朱玉灿.g-框架的稳定性[J].福州大学学报(自然科学版),2007,35(3):321-325. 被引量:10
  • 3肖祥春,朱玉灿,王燕津,丁明玲.由g-Bessel序列定义的线性算子的一些性质[J].福州大学学报(自然科学版),2007,35(3):326-330. 被引量:6
  • 4DUFFIN R J, SCHAEFFER A C. A class of nonharmonic Fourier series[J]. Trans Amer Math Soc, 1952,72:341 -366.
  • 5DAUBECHIES I, GROSSMANN A, MEYER Y. Painless nonorthogonal expansions[J]. J Math Phys, 1986,27:1271 - 1283.
  • 6CASAZZA P G. The art of frame theory [ J ]. Taiwan Residents J of Math, 2000,4 (2) :129 -201.
  • 7CHRISTENSEN O. An Introduction to Frames and Riesz Bases[ M]. Boston: Birkhauser, 2003.
  • 8SUN W C. G-frames and g-Riesz bases[J]. J Math Anal Appl, 2006,322( 1 ) :437 -452.
  • 9SUN W C. Stability of g-frames[J]. J Math Anal Appl, 2006,326(2) :858 -868.
  • 10LI D F, SUN W C. Some equalities and inequalities for generalized frames[J]. Chin Jour of Contemp Math, 2008,29(3) : 301 - 308.

引证文献9

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部