期刊文献+

直径为三的不可上嵌入的图

Non-upper Embeddable Graphs with Diameter Three
原文传递
导出
摘要 本文证明了只存在一类3-边连通的直径为三的12个点的不可上嵌入的图. It is showed that there is exact one class of 3-edge connected graphs of twelve vertices with diameter three which is not upper embeddable.
出处 《应用数学学报》 CSCD 北大核心 2008年第5期786-791,共6页 Acta Mathematicae Applicatae Sinica
基金 国家自然科学基金(10201022 10571124) 北京市教委(KM 200610028002)资助项目
关键词 直径 边连通 上嵌入 diameter upper embeddable edge connectivity
  • 相关文献

参考文献8

  • 1Chen J, Archdeacon D, Gross J L. Maximum Genus and Connectivity. Discr Math., 1996, 146:19-29.
  • 2Fu H, Tsai M. The Maximum Genus of Diameter Three Graphs. J. Austr. Combin., 1996, 14: 187-197.
  • 3Gross J L, Tucker T W. Topological Graph Theory. New York: Wiley-Interscience, 1987.
  • 4Huang Yuanqiu, Liu Yanpei. The Maximum Genus of Graphs with Diameter Three. Discr Math., 1999, 194:139 149.
  • 5Li Deming, Liu Yanpei. Maximum Genus, Girth and Connectivity. European Journal of Combinatorics. 2000. 21:651-657.
  • 6Nebesky L. A Characterization of the Maximum Genus af a Graph. Czechoslovak Math J., 1981, 31(106): 604-613.
  • 7Skoviera M. The Maximum Genus of Graphs of Diameter Two. Discr Math., 1991, 87:175-180.
  • 8Xuong N. Upper Embeddable Graphs and Related Topics. J. Combin. Theory (Series B), 1979, 26: 226-232.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部