直径为三的不可上嵌入的图
Non-upper Embeddable Graphs with Diameter Three
摘要
本文证明了只存在一类3-边连通的直径为三的12个点的不可上嵌入的图.
It is showed that there is exact one class of 3-edge connected graphs of twelve vertices with diameter three which is not upper embeddable.
出处
《应用数学学报》
CSCD
北大核心
2008年第5期786-791,共6页
Acta Mathematicae Applicatae Sinica
基金
国家自然科学基金(10201022
10571124)
北京市教委(KM 200610028002)资助项目
关键词
直径
边连通
上嵌入
diameter
upper embeddable
edge connectivity
参考文献8
-
1Chen J, Archdeacon D, Gross J L. Maximum Genus and Connectivity. Discr Math., 1996, 146:19-29.
-
2Fu H, Tsai M. The Maximum Genus of Diameter Three Graphs. J. Austr. Combin., 1996, 14: 187-197.
-
3Gross J L, Tucker T W. Topological Graph Theory. New York: Wiley-Interscience, 1987.
-
4Huang Yuanqiu, Liu Yanpei. The Maximum Genus of Graphs with Diameter Three. Discr Math., 1999, 194:139 149.
-
5Li Deming, Liu Yanpei. Maximum Genus, Girth and Connectivity. European Journal of Combinatorics. 2000. 21:651-657.
-
6Nebesky L. A Characterization of the Maximum Genus af a Graph. Czechoslovak Math J., 1981, 31(106): 604-613.
-
7Skoviera M. The Maximum Genus of Graphs of Diameter Two. Discr Math., 1991, 87:175-180.
-
8Xuong N. Upper Embeddable Graphs and Related Topics. J. Combin. Theory (Series B), 1979, 26: 226-232.
-
1续阳.找相同的图案[J].小学生必读(低年级版),2011(7):6-6.
-
2王芒芒.微课在高中信息技术教学中的嵌入与实践[J].学苑教育,2016,0(8):16-16.
-
3朱运喜.在应用程序中嵌入浏览器[J].电脑知识与技术(过刊),2001(01B):54-55.
-
4达实.Linux“嵌入”未来[J].互联网世界,2000(10):46-46.
-
5徐之峭.意要称物 文要逮意——以苏教版三上“习作3”的教学为例[J].江苏教育,2017(89):61-62.
-
6邬耀仿.我为深圳写首诗(组诗)[J].鸭绿江,2019,0(12):42-46.
-
7李颖.读书的感觉真好[J].新教育(海南),2019,0(12):40-40.
-
8凌志.“三个代表”重要思想的命名之我见[J].思想政治理论教育新探索,2015(1):92-106.
-
9姚中华.向苦而歌[J].高中生(高考),2019,0(7):5-5.