期刊文献+

G(2m+1,m)的不可定向强最大亏格

Nonorientable Strong Maximum Genus of G(2m+1,m)
原文传递
导出
摘要 图G的最大亏格指图G能嵌入到亏格为k的曲面的最大整数k.对于广义Petersen图G(2m+1,m),当m≡1,4(mod 6),给出了最大亏格的表达式,对其余情形,给出了不可定向强最大亏格的上界和下界. Maximum genus k of graph G is the largest integer k such that G can be embedded on the surface of genus k.G(2m+1,m)is a class of generalized Petersen graph. In this paper,a below bound of^-γsM(2m+1,m)is given.In particular,if m≡1,4(mod 6), the nonorientable strong maximum genus is given.
出处 《应用数学学报》 CSCD 北大核心 2008年第5期799-805,共7页 Acta Mathematicae Applicatae Sinica
基金 国家自然科学基金(10771225)资助项目
关键词 亏格 嵌入 广义PETERSEN图 genus embedding generalized Petersen graph
  • 相关文献

参考文献11

  • 1Bondy J A, Murty U S. Graphs Theory with Application. London: Macmillan, 1979.
  • 2Liu Y P. Enumerative Theory of Maps. Boston: Kluwer, 1998.
  • 3Alspach B, Zhang C Q. Cycle Covering of Cubic Multigraphs. Discrete Mathematics, 1993, 111: 11-17.
  • 4Zha X. The Closed 2-cell Embeddings of 2-connected Doubly Toroidal Graphs. Discrete Mathematics, 1995, 145:259-271.
  • 5Zha X. Closed 2-cell Embedding of Nonseperable 5 Cross-cap Embeddable Graphs. J. Comb. T. (B), 1997, lS: 461-477.
  • 6Robertson N, Zha X. Closed 2-cell Embeddings of Graphs with no Vs-minors. Discrete Mathematics, 2001, 230:207-213.
  • 7Zhang C Q. On Embeddings of Graphs Containing no Ks-minor. Journal of Graph Theory, 1996, 21:401-404.
  • 8Ma D J, Ren H, Lu J J. The Crossing Number of Generalized Petersen Graph G(2m+1,m). Journal of East China Normal University, 2005, 1:34-39.
  • 9http://mathwor ld.wolfram.com/GeneralizedPetersenGraph.html.
  • 10Alspach B. The Classification of Hamiltonian Generalized Petersen Graphs. J. Comb. T. B., 1983, 34:293 -312.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部