期刊文献+

一类非线性椭圆型微分方程解的存在唯一性研究 被引量:1

Study on the Existence and Uniqueness of Solutions to a Kind of Elliptic Differential Equations
原文传递
导出
摘要 本文考虑一类非线性椭圆型偏微分方程解的存在唯一性问题,通过研究相关线性边值问题的弱特征值性态,根据全局反函数定理,我们得到这类非线性椭圆型方程的可解条件,并给出解的存在唯一性证明,其主要结果推广了有关该问题的已有结论. In this paper,we consider the existence and uniqueness of solutions to a kind of elliptic differential equations.By studying on the weak eigenvalues of the related linear boundary value problems,and basing on the global inverse function theorem,we get the solvability condition and prove the uniqueness of solutions to this kind of nonlinear elliptic equations.The main theorems of this paper generalize the known results of related problems.
出处 《应用数学学报》 CSCD 北大核心 2008年第5期826-835,共10页 Acta Mathematicae Applicatae Sinica
关键词 弱解 弱特征值 Riesz-Frechet定理 CARATHEODORY条件 weak solution weak eigenvalue Riesz-Frechet theorem Catatheodory condition
  • 相关文献

参考文献12

  • 1Lazer A, Leach D. On a Nonlinear Two-point Boundary Value Problem. J. Math. Anal. and Appl., 1969, 26:20-27.
  • 2Landesman E, Lazer A. Linear Eigenvalues and a Nonlinear Boundary Value Problem. Paci. J. Math., 1970, 33(2): 311-328.
  • 3Dolph C. Nonlinear Integral Equations of the Hammer Stein Type. Trans. Amer. Math. Soc., 1949, 66:289-307.
  • 4Agmon S. Lectures on Elliptic Boundary Value Problems. New York: D. Van Noatrand Company. Inc., 1965.
  • 5Riesz F, Sz.-Nagy B. Functional Analysis. New York: Ungar, 1955.
  • 6Courant R, Hilbert D. Methods of Mathematical Physics. New York: Interscience Publishers, 1953.
  • 7Manasevich R. A Non Varational Version of a Max-Min Principle. Nonl. Anal. Theo. Meth. Appl., 1983, 7(6): 565-570.
  • 8Plastock R. Homeomorphism between Banach Space. Trans. Am. Math. Soc., 1974, 200:169-183.
  • 9Zuhe S. On the Period Solution to the Newtonian Equation of Motion. Nonl. Anal., Theo., Meth. & Appl., 1989, 13(2): 145-149.
  • 10Bates P. Solutions of Nonlinear Elliptic Systems with Meshed Spectra. Nonl. Anal. Theo. Meth. & Appl., 1979, 4(6): 1023-1030.

同被引文献9

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部