期刊文献+

Farkas引理的几个等价形式及其推广 被引量:2

Some Equivalent Forms of Farkas Lemma and Their Generalization
原文传递
导出
摘要 本文考虑了Farkas引理,Gordan引理及其拓展形式之间的关系,从理论上证明了其等价性并说明了Farkas引理在各种等价形式中的重要地位,并指出了Gordan引理实际是可看作是Farkas引理的弱形式,然后研究了Farkas引理及其它形式在锥线性不等式组中的推广. This paper discusses the relationships among Farkas lemma,Gordan lemma, Motzkin theorem and Kuhn-Fourier theorem.The equivalences of Farkas lemma,Motzkin theorem and Kuhn-Fourier theorem are proved,and Gordan lemma can be considered as a corollary of Farkas lemma.Then we discussed the applications of Farkas lemma in analyzing the solvability of systems of inequalities.Finally,some generalizations of Farkas lemma for the systems of generalized inequalities are considered.
作者 王周宏
出处 《应用数学学报》 CSCD 北大核心 2008年第5期929-939,共11页 Acta Mathematicae Applicatae Sinica
基金 国家自然科学基金(10671010) 教育部高等学校博士学科点专项科研基金新教师基金(20070004029)资助项目
关键词 FARKAS引理 Gordan引理 线性不等式组 线性锥不等式组 解的存在性 Farkas lemma Gordan lemma systems of inequalities generalized inequalities solvability
  • 相关文献

参考文献22

  • 1Stoer J, Witzgall C. Convexity and Optimization in Finite Dimensions, Vol.I. Heidelberg: Springer- Verlag, 1970.
  • 2Ben-Israel A. Linear Equations and Inequalities on Finite Dimensional, Real Or Complex, Vector Spaces: A Unified Theory. Journal of Mathematical Analysis and Applications, 1969, 27:367-389.
  • 3Berman A, Ben-Israel A. Linear Inequalities, Mathematical Programming and Matrix Theory. Mathematical Programming, 1971, 1:291-300.
  • 4Craven B D, Koliha J J. Generalization of Farkas Theorem. SIAM J. Math. Anal., 1977, 8(6): 983 -997.
  • 5Lasserre J B. A Farkas lemma without a Standard Closure Condition. SIAM Journal on Control and Optimization, 1997, 35(1): 265-272.
  • 6Polik I, Terlaky T. A Survey of the S-Lemma. SIAM Review, 2007, 49(3): 371-418.
  • 7Broyden C G. A Simple Algebraic Proof of Farkas'S Lemma and Related Theorems. Optimization Methods and Software, 1998, 8(3-4): 185-199
  • 8Dax A. An Elementary Proof of Farkas' Lemma. SIAM Review, 1997, 39(3): 503-507.
  • 9Avis D, Kaluzny B. Solving Inequalities and Proving Farkas's Lemma Made Easy. The American Mathematical Monthly, 2004, 111(2): 152-157.
  • 10Chvatal V. Linear Programming. New York: W. M. Freeman and Company, 1983.

同被引文献9

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部