期刊文献+

增强型单类支持向量机 被引量:11

Enhanced One-Class SVM
下载PDF
导出
摘要 现有基于超平面的单类分类器,包括one-class SVM(OCSVM)和马氏one-class SVM(MOCSVM),由于未考虑数据的结构信息或粒度较粗,寻找的超平面很可能是次优解.为此,增强型单类支持向量机(enhanced OCSVM,EnOCSVM)通过在现有SVM算法中加入数据先验信息以克服其不足.首先,EnOCSVM通过聚类得到数据的内在分布簇,而后将各簇结构信息嵌入到OCSVM框架中,最大化间隔的同时,优化输出空间中各簇数据的紧性.由于保留了SVM框架不变,EnOCSVM仍具备原算法的全部优点,并因结合了数据的簇结构信息而具有更好的推广性.标准数据集上的实验表明,EnOCSVM的推广性能较OCSVM和MOCSVM均有显著提高. One-class-classifier (OCC) aims to distinguish a target class from outliers. Existing OCC algorithms based on hyperplane, such as one-class SVM (OCSVM) and Mahalanobis one-class SVM (MOCSVM), solve this problem by finding a hyperplane with the maximum distance to the origin. However, since they either neglect the structure of the given data or just takes the structure into account in a relatively coarse granularity, only the suboptimal hyperplane may be abtained. In order to mitigate this problem, a novel OCC named enhanced one-class SVM (EnOCSVM) is proposed. First obtaining the distribution of the target data by the unsupervised methods such as agglomerative hierarchical clustering, and then embedding the cluster information into the original OCSVM framework, EnOCSVM can optimize the tightness of target data and maximizes the margin from the origin simultaneously. In this way, EnOCSVM not only takes much more priori knowledge into account than the above algorithms, but also provides a general method to extend the present SVM algorithm to consider intrinsic structure of the data. Moreover, the optimization of the EnOCSVM can be solved using the standard SVM implementation similar to OCSVM, and all the advantages of SVM are preserved. Experiment results on benchmark data sets show that EnOCSVM really has better generalization than OCSVM and MOCSVM significantly.
出处 《计算机研究与发展》 EI CSCD 北大核心 2008年第11期1858-1864,共7页 Journal of Computer Research and Development
基金 国家自然科学基金项目(60603029,60703016) 江苏省博士后科研资助计划基金项目(05225)~~
关键词 单类分类器 超平面 结构信息 支持向量机 簇分布 one-class-classifier hyperplane structure information support vector machine multi-clustered
  • 相关文献

参考文献24

  • 1Tax D. One-class classification: Concept-learning in the absence of counter-examples [D]. Delft: Delft University of Technology, 2001
  • 2Manevitz L, Yousef M. One-class SVMs for document classification [J]. Journal of Machine Learning Research, 2002, 2:139-154
  • 3Chen Y, Zhou X, Huang T. One class SVM for learning in image retrieval [J]. Image Processing, 2001, 1:34-37
  • 4Campbell C, Bennett K P. A linear programming approach to novelty detection [C]//Advances in Neural Information Processing Systems. Cambridge: MIT Press. 2001:395-401
  • 5Hoffmann H. Kernel PCA for novelty detection [J]. Pattern Recognition, 2007, 40(3): 863-874
  • 6潘志松,倪桂强,谭琳,胡谷雨.异常检测中单类分类算法和免疫框架设计[J].南京理工大学学报,2006,30(1):48-52. 被引量:5
  • 7Scholkopf B, Platt J C, Shawe-Taylor J. Estimating the support of a high-dimensional distribution [J]. Neural Computation, 2001, 13(7): 1443-1471
  • 8Tax D, Duin R P. Support vector domain description [J]. Pattern Recognition Letters, 1999, 200(11/13): 1191-1199
  • 9Bishop C. Novelty detection and neural network validation [C] //IEE Proc of Vision, Image and Signal Processing. 1994:217-222
  • 10Duda R O, Hart P E, Stork D G. Pattern Classification [M]. 2nd ed. New York: John Wiley & Sons, 2001

二级参考文献15

  • 1Kim J,Bentley P.The artificial immune model for network intrusion detection [A].7th European Conference on Intelligent Techniques and Soft Computing (EUFIT' 99) [C].Aachen,Germany:EUFIT,1999.
  • 2Forrest S,Hofmeyr S A,Somayaji A.Computer immunology[J].Communications of the ACM,1997,40(10):88-96.
  • 3Somayaji A,Hofmeyr S,Forrest S.Principles of a computer immune system[A].New Security Paradigms Workshop[C].ACM:Boisuert R,1998.75-82.
  • 4Warrender C,Forrest S,Pearlmutter B.Detecting intrusion using system calls:Alternative data models [A].IEEE Symposium on Security and Privacy [C].Oakland:CA,1999.133-145.
  • 5Forrest S,Hofmeyr S A,Longstaff T A.A sense of self for unix processes [A].IEEE Symposium on Security and Privacy[C].Oakland:CA,1996.120-128.
  • 6Tax D M J.One-class classification [D].Deft:Delft University of Technology,2001.1-190.
  • 7Manevitz L M,Yousef M.One-class SVMs for document classification [J].Journal of Machine Learning Research,2001(2):139-154.
  • 8Rtsch G,Schlkopf B,Mika S,Müller K R.SVM and boosting:One class [R].Berlin,Germany:GMD FIRST Kekuléstr,2000.1-23.
  • 9Chen Yunqiang,Zhou Xiangsean.One-class SVM for learning in image retrieval [A].IEEE Intl Conf on Image Proc (ICIP'2001) [C].Greece:Thessaloniki,2001.
  • 10Kohonen T.Self-organizing map [M].Berlin:Springer-Verlag,1995.117-119.

共引文献4

同被引文献114

引证文献11

二级引证文献39

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部