期刊文献+

W-C-倾斜模 被引量:5

W-C-tilting modules
下载PDF
导出
摘要 给出了W-C-倾斜模的概念,是对经典倾斜模和Wakamatsu-倾斜模概念的推广。给出了W-C-倾斜模存在的条件,并研究了W-C-倾斜模的性质。 The definition of W-C-tilting modules was given, which is a generalization of the definitions of classical tilting modules and Wakamatsu-tilting modules. Furthermore, the condition of the existence of W-C-tilting modules was given and the properties of W- C-tilting modules were investigated.
作者 雷雪萍
出处 《山东大学学报(理学版)》 CAS CSCD 北大核心 2008年第10期27-30,共4页 Journal of Shandong University(Natural Science)
基金 国家自然科学基金资助项目(10771112)
关键词 ARTIN代数 Wakamatsu-倾斜模 W—C-倾斜模 Artin algebras Wakamatsu-tilting modules W-C-tilting modules
  • 相关文献

参考文献5

  • 1WAKAMATSU T. On modules with trivial self-extensions[J]. J Algebra, 1988, 114:106-114.
  • 2MIYASHITA Y. Tilting modules associated with a series of idempotent ideals[J]. J Algebra, 2001, 238:485-501.
  • 3WEI Jiaqun, XI Changchang. A characterization of the tilting pair[J]. J Algebra, 2007, 317:376-391.
  • 4WEI Jiaqun, XI Changchang. Auslander-Reiten correspondence for tilting pairs[J]. J Pure Applied Algebra, 2008, 212:411-422.
  • 5HAPPEL D, UNGER L. Complements and the generalized Nakayama conjecture[J]. CMS Conf Proc, 1998, 24:293-310.

同被引文献26

  • 1李煜彦,何东林.n-余倾斜对的一个刻画[J].西北师范大学学报(自然科学版),2008,44(6):18-23. 被引量:2
  • 2AUSLANDER M, REITEN I. Apphcations of contravariantly finite subcategories[J]. Adv Math, 1991, 86:111-152.
  • 3WEI Jiaqun, XI Changchang. Attslander-Reiten correspondence for tilting pairs[J]. J Pure Applied Algebra, 2008, 212:411-422.
  • 4WEI Jiaqun, XI Changehang. A characterization of the tilting pair[J]. J Algebra, 2007, 317:376-391.
  • 5WAKAMATSU T. On modules with trivial self-extensions[J]. J Algebra, 1988, 114:106-114.
  • 6WEI J Q,XI C C.A characterization of the tilting pairs[J].J Algebra,2007,317(1):376-391.
  • 7WEI J Q,XI C C.Auslander-Reiten Correspondence for tilting pairs[J].Journal of Pure and Applied Algebra,2008,212(2):411-422.
  • 8HAPPEL D,UNGER L.Complements and the generalized Nakayama conjecture[J].CMS Conf Proc,1998,24:293-310.
  • 9AUSLANDER M,SOLBERG Q.Relative homology and representation theory I.Relative homology and homologically finite subcategories[J].Comm.Algebra,1993,21 (9):2995-3031.
  • 10MANTESE F.REITEN I.Wakamatsu tilting modules[J].J.Algebra,2004,278(2):532-552.

引证文献5

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部