期刊文献+

双层壳聚糖与HAP复合支架的初步研究 被引量:9

PRELIMINARY STUDY ON CHITOSAN/HAP BILAYERED SCAFFOLD
下载PDF
导出
摘要 目的探讨双层壳聚糖(chitosan,CS)/HAP复合支架作为骨软骨组织工程支架的可行性,并结合兔自体BMSCs修复骨软骨缺损。方法采用冻干法和烧结法制作双层CS/HAP复合支架,检测其理化特性。取日本大耳白兔骨髓4~6mL,全骨髓培养法分离纯化BMSCs,并鉴定。调整第2代BMSCs细胞密度为2×107个/mL,应用纤维蛋白胶种植技术,接种至双层CS/HAP复合支架,体外构建细胞-支架复合物。取36只日本大耳白兔,于右侧膝关节股骨下端外侧髁负重区,作一直径4mm、深3mm的圆柱形缺损,制备兔膝关节骨软骨缺损模型。根据缺损区植入物的不同,分为A、B、C3组(n=12)。A组:植入细胞-支架复合物;B组:植入双层CS/HAP复合支架;C组:不植入任何材料,作为空白对照组。术后6、12周取材,行大体及组织学观察,采用改良Wakitani法评分。结果双层CS/HAP支架CS层孔隙率为76.00%±5.01%,孔径为200~400μm,平均300μm,孔洞相通;HAP层孔隙率为72.00%±4.23%,孔径为200~500μm,平均350μm,孔洞相通,结合部结合好。全骨髓法培养BMSCs,第7天可见集落形成,14d传代;免疫组织化学检测示CD44(+)和CD45(—)。大体观察和组织学检测显示,A组基本修复软骨缺损,骨缺损修复不良,有骨小梁长入;B、C组骨、软骨缺损修复不良,组织学检测以纤维组织或无新生组织形成,软骨及骨缺损均明显存在。术后6、12周,A组改良Wakitani评分分别为(5.17±1.17)分和(3.20±0.75)分,均优于B、C组,差异有统计学意义(P<0.05)。结论双层CS/HAP复合支架可作为骨软骨组织工程支架,复合BMSCs可修复兔关节软骨与骨缺损,重建关节解剖结构。 Objective To study repair of osteochondral defects by using composite of autologous BMSCs and chitosan/HAP (CS/HAP) bilayered scaffold in rabbits and its feasibility as osteochondral tissue engineering scaffolds. Methods CS/HAP bilayered scaffolds were produced with CS and HAP using a lyophilization and sintering method. The pore size of the scaffold was observed by scanning electron microscopy (SEM). Anhydrous ethanol substitution method determined its porosity. BMSCs were isolated from bone marrow and cultured by general bone marrow methods. Both CD44 and CD45 on the BMSCs surface were detected with immunocytochemistry to identify BMSCs. Cell-scaffold complex was made with BMSCs as seed cells and CS/HAP bilayered scaffold as carrier by fibrin glue planting technique. The distribution of BMSCs in CS/HAP scaffold was tested by SEM. The osteochondral defect (4 mm in diameter and 3 mm in height) model was made in the right knee ioint of 36 Japanese white rabbits, which were randomly divided into 3 groups. Defects were repaired with CS/HAP and BMSCs composite ( group A, n=12) and with CS/HAP implants (group B, n=12); defects were not treated as a control (group C, n=12). Histological evaluation and gross observation were carried out at 6 weeks (n=6 in each group) and 12 weeks (n=6 in each group) postoperatively. Semi-quantitative histomorphological analysis was done to evaluate the repair cartilage tissue according to the modified Wakitani grading scale. Results CS/HAP bilayered scaffold possessed a porosity of 76.00% ± 5.01% and pore size of 200-400 μm (mean 300 μm ) in CS layer, and 72.00%±4.23% and 200-500 μm (mean 350μm) in HAP layer, respectively. BMSCs formed colonies within 10-14 days. Immunocytochemistry results showed BMSCs had positive CD44 expression and negative CD45 expression. At 6 and 12 weeks after operation, gross and histological observation showed that the cartilage defects were fully filled with regenerated tissue, but bone defects were partially repaired in group A; the cartilage and bone defects were partially filled with regenerated tissue in group B and group C. The modified Wakitani grading scale were 5.17 ± 1.17 and 3.20±0.75 in group A, 9.00 ±0.63 and 6.00 ± 0.89 in group B, and 10.00 ±0.89 and 9.60±0.82 in group C at 6 weeks and 12 weeks postoperatively, respectively; showing significant differences between group A and groups B, C (P 〈 0.05). Conclusion The novel CS/HAP bilayered scaffold possesses porous structure and will possibly become a new biomaterial of osteochondral tissue engineering.
出处 《中国修复重建外科杂志》 CAS CSCD 北大核心 2008年第11期1358-1363,共6页 Chinese Journal of Reparative and Reconstructive Surgery
基金 国家自然科学基金资助项目(30740089) 武警医学院科研基金(WBS2007-13)~~
关键词 骨软骨组织工程 双层壳聚糖/HAP支架 BMSCS 骨软骨缺损 Osteochondral tissue engineering Chitosan/ HAP bilayered scaffold BMSCs Osteochondral defect Rabbit
  • 相关文献

参考文献25

  • 1Westacott C. Interactions between subchondral bone and cartilage in OA. Cells from osteoarthritic bone can alter cartilage metabolism. J Musculoskelet Neuronal Interact, 2002, 2(6): 507-509.
  • 2Martin I, Miot S, Barbero A, et al. Osteochondral tissue engineering. J Biomech, 2007, 40(4): 750-765.
  • 3Gratz KR, Wong VW, Chen AC, et al. Biomechanical assessment of tissue retrieved after in vivo cartilage defect repair: tensile modulus of re pair tissue and integration with host cartilage, J Biomech, 2006, 39(1) 138-146.
  • 4Hsu YY, Gresser JD, Trantolo DJ, et al. Effect of polymer foam morphology and density on kinetics of in vitro controlled release of isoniazid from compressed foam matrices. J Biomed Mater Res, 1997, 35(1): 107-116.
  • 5段小军,张洪鑫,杨柳,王东武,陈光兴,李忠.改进型纤维蛋白凝胶种植技术在组织工程骨体外构建中的应用[J].生物医学工程与临床,2006,10(5):271-274. 被引量:4
  • 6Wakitani S, Goto T, Young RG, et al. Repair of large full-thickness articular cartilage defects with allograft articular chondrocytes embedded in a collagen gel. Tissue Eng, 1998, 4(4): 429-444.
  • 7郭晓东,杜靖远,郑启新,刘勇,段德宇,全大萍,卢泽俭.转化生长因子β_1基因修饰的间充质干细胞/仿生基质材料的体外复合培养[J].中国医学科学院学报,2001,23(4):373-377. 被引量:16
  • 8Schek RM, Taboas JM, Segvich SJ, et al. Engineered osteochondral grafts using biphasic composite solid free-form fabricated scaffolds. Tissue Eng, 2004, 10(9-10): 1376-1385.
  • 9Montembault A, Tahiri K, Korwin-Zmijowska C, et al. A material decoy of biological media based on chitosan physical hydrogels: application to cartilage tissue engineering. Biochimie, 2006, 88(5): 551-564.
  • 10Qi LL, Chen ZQ, Darvell BW, et al. Biomimetic synthesis of the composites of hydroxyapatite and chitosan-phosphorylated chitosan poly- electrolyte complex. Materials Letters, 2006, 3533-3536.

二级参考文献26

  • 1段小军,杨柳,周跃,李忠,陈光兴,王东武,李起鸿.动态监测组织工程软骨的体外构建及三维静态培养[J].中华实验外科杂志,2005,22(3):297-299. 被引量:3
  • 2Schaefer D,Martin I,Shastri P,et al.In vitro generation of osteochondral omposites.Biomaterials,2000,21:2599-2606.
  • 3Chen FS,Frenkel SR,DiCesare PE.Repair of articular cartilage defects:part Ⅱ.Treatment options.Am J Orthop ,1999,28:88-96.
  • 4Schaefer D,Martin I,Jundt G,et al.Tissue-engineered composites for the repair of large osteochondral defects.Arthritis Rheum,2002 ,46:2524-34.
  • 5Sherwood JK,Riley SL,Palazzol OR,et al.A three一dimensional osteochondral compsite scaffold for articular Cartilge repair.Biomaterials,2002,23:4739-4751.
  • 6Kreklau B,Sittinger M,Mensing MB,et al.Tissue engineering of biphasic joint cartilage transplants.Biomaterials,1999,20:1743-1749.
  • 7J.萨姆布鲁克 E.F.弗里奇 T.曼尼阿蒂斯.分子克隆实验指南[M].第3版[M].北京:科学出版社,2003..
  • 8Garfein ES,Orgill DP,Pribaz JJ.Clinical applications of tissue engineered constructs[J].Clin Plast Surg,2003,30 (4):485-498.
  • 9Terai H,Hannouche D,Ochoa E,et al.In vitro engineering of bone using a rotational oxygen-permeable bioreactor system[J].Mater Sci Eng:C,2002,20:3-8.
  • 10Jiang Y,Jahagirdar BN,Reinhardt RL,et al.Pluripotency of mesenchymal stem cells derived from adult marrow[J].Nature,2002,418(6893):41-49.

共引文献33

同被引文献126

引证文献9

二级引证文献48

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部