期刊文献+

Bose-Einstein凝聚中一类非线性Schrdinger方程的门槛条件 被引量:2

Threshold of a Class of Nonlinear Schrdinger Equations in Bose-Einstein Condensate
下载PDF
导出
摘要 本文考虑Bose-Einstein凝聚中一类非线性Schrdinger方程.通过构造一类强制变分问题和建立两个不变发展流,解决了该方程整体解和爆破解存在所依赖的初始值的门槛条件. We investigate a class of nonlinear Schrodinger equations in Bose-Einstein condensate. By constructing a constrained variational problem and establishing two invariant evolution flows, we obtain the threshold of global existence and blowup of the system.
作者 黄欣 蒲志林
出处 《应用数学》 CSCD 北大核心 2008年第4期650-655,共6页 Mathematica Applicata
基金 国家自然科学基金(10726033 10771151) 四川省教育厅重点科研项目(2006A063) 四川省科技厅应用基础科研项目(07JY029-012)
关键词 BOSE-EINSTEIN凝聚 非线性SCHRODINGER方程 门槛条件 整体存在 爆破 Bose-Einstein condensate Nonlinear Schrodinger equation Threshold Global existence Blowup.
  • 相关文献

参考文献13

  • 1Bradley C C, Sackett C A, Hulet R G. Bose-Einstein condensation of Lithium:observation of limited condensate number[J]. Phys. Rev. Lett. , 1997,78:985-989.
  • 2Tsurumi T,Wadati M. Collapses of wave functions in multidimensional nonlinear Schrodinger equations under harmonic potentia[J]. Phys. Soc. Jpn. , 1997,66:3031-3034.
  • 3Oh Y G. Cauchy problem and Ehrenfest's law of nonlinear Schrodinger equations with potentials[J]. Journal of Differential Equations, 1989,81 : 255-274.
  • 4Cazenave T. Semilinear SchrOdinger equations, Courant lecture notes, 10[M]. New York: American Mathematical Society, Providence, R. I. ,2003.
  • 5Kuznetsov E A,Rasmussen J J, Rypdal K,Turitsyn S K. Sharper criteria for the wave collapse[J]. Physica D,1995,87:273-284.
  • 6Zhang J. Sharp conditions of global existence for nonlinear Schrodinger and Klein-Gordon equations[J]. Nonlinear Analysis, 2002,48 : 191-207.
  • 7Berestycki H, Cazenave T, Instabilite des etats stationnaires dans les equations de Schrodinger et de Klein-Gordon non linearires[J]. C. R. Acad. Sei. Paris,Seire I, 1981,293:489-492.
  • 8Zhang J. Sharp threshold for global existence and blowup in nonlinear Schrodinger equation with harmonic potential[J]. Communications in Partial Differential Equations, 2005,30 : 1429 -1443.
  • 9陈光淦,张健.一类带调和势的非线性Schrdinger方程在R^N中的整体解存在的门槛[J].数学年刊(A辑),2006,27(2):231-238. 被引量:3
  • 10Payne L E,Sattinger D H. Saddle points and instability of nonlinear hyperbolic equations[J]. Israel journal of Mathematics, 1975,22(3-4) : 273-303.

二级参考文献22

  • 1Berestycki H.and Cazenave T.,Instabilitédes états stationnaires dans les équations de Schrodinger et de Klein-Gordonnon linéarires[J].C.R.Acad.Sci.Paris,Seire I,1981,293:489-492.
  • 2Bradley C.C.,Sackett C.A.and Hulet R.G.,Bose-Einstein condensation ofLithium:observation of limited condensate number[J].Phys.Rev.Lett.,1997,78:985-989.
  • 3Carles R.,Remarks on the nonlinear Schrodinger equation with harmonicpotential[J].Annals Henri Poincaré,2002,3:757-772.
  • 4Carles R.,Critical nonlinear Schrodinger equations with and without harmonicpotential[J].Math.Models and Meth.in Appl.Sci.,2002,12:1513-1523.
  • 5Cazenave T.and Lions P.L.,Orbital stability of standing waves for some nonlinearSchrodinger equations[J].Commun.Math.Phys.,1982,85:549-561.
  • 6Cazenave T.,An Introduction to Nonlinear Schrodinger Equations[M].Textos de MetodosMatematicos,Vol.26,Rio de Janeiro,1996.
  • 7Dalfovo F.,Giorgini S.,Pitaevskii L.P.and Stringari R.,Theory of Bose-Einsteincondensation in trapped gases[J].Reviews of Modern Physics,1999,71:463-512.
  • 8Fujiwara K.,Remarks on convergence of the Feynman path integrals[J].DukeMath.J.,1980,47:559-600.
  • 9Fukuizumi R.and Ohta M.,Stability of standing waves for nonlinear Schrodinger equationswith potentials[J].Diff.and Inte.Equ.,2003,16:111-128.
  • 10Kagan Y.,Muryshev A.E.and Shlyapnikov G.V.,Collapse and Bose-Einstein condensation ina trapped Bose gas with negative scattering length[J].Phys.Rev.Lett.,1998,81:933-937.

共引文献2

同被引文献18

  • 1王明亮,李向正,韩淑霞.Nizhnik方程组的一个非线性变换和多重孤子解(英文)[J].应用数学,2005,18(2):225-231. 被引量:4
  • 2陈光淦,张健.一类带调和势的非线性Schrdinger方程在R^N中的整体解存在的门槛[J].数学年刊(A辑),2006,27(2):231-238. 被引量:3
  • 3Li Ma, Lin Zhao. Sharp thresholds of blow-up and global existence for the coupled nonlinear Schr6dinger system[J]. J Math Phys,2008,49(6) : 17.
  • 4Ginibre J,Velo G. On a class of nonlinear Schrodinger equations 1:The Cauchy problem,general case[J]. J Funct Anal, 1979,32(1) :1.
  • 5Caries R. Critical nonlinear Schrodinger equations with and without harmonic potential[J]. Math Mod Meth Appl Sci, 2002,12(1) :1513.
  • 6Weinstein M I. Nonlinear SchrOdinger equations and sharp interpolation estimates[J]. Commun Math Phys, 1982/1983,87 (4) :567.
  • 7Glassey R T. On the blow up of nonlinear Schrodinger equations[J]. J Math Phys, 1977,18(9)..1794.
  • 8Gilson C, Lambert F, Nimmo J, et al. On the combinatorics of the Hirota D -operators[J]. Proc Royal Soc, 1996,A452: 223 - 234.
  • 9Bell E T. Exponential polynomials [ J ]. Ann Math, 1934,35 ( 2 ) : 258 - 277.
  • 10Fan E G. New bilinear Btcklund transformation and Lax pair for the supersymmetric Two - Boson equation [ J ]. Studies in Applied Mathematics,2011,127 ( 3 ) : 284 - 301.

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部