期刊文献+

基于鞅方法的分数Brown运动模型的期权定价 被引量:6

Options Valuating of FBM Model Based on the Martingale Method
下载PDF
导出
摘要 本文利用基础资产价格过程的逼近过程,研究了一类Hurst指数属于(1/2,1)的分数Brown运动模型,通过逼近过程的鞅性,获得了FBM市场的等价鞅测度通过鞅测度变换获得了FBM下的期权定价控制方程和欧式期权的解析公式,改进了部分已有的结果. In this paper,a fractional Brownian motion model which Hurst index belongs to (1/2,1) has been studied by using the martingale property of an approximate stochastic process. The equivalent martingale measure of FBM approximate market has been found,the control equation and close solution of Europe options has been obtained. These results improved some conclusions.
出处 《应用数学》 CSCD 北大核心 2008年第4期727-730,共4页 Mathematica Applicata
关键词 HURST指数 分数Brown运动 等价鞅测度 期权定价 Hurst index Fractional Brownian motion Equivalent martingale measure Options valuate
  • 相关文献

参考文献8

  • 1Mandelbrot B, Ness J Van, Fractional Brownian motions, fractional noises and applications[J]. J. SIAM Rev. 1968,10:422-437.
  • 2Sun X,Chen H P, Wu Z Q, Yuan Y Z. Multifractal analysis of Heng Seng index in Hong Kong stock market[J]. Physica A,2001,291:553-562.
  • 3Hu Y, Oksendal B. Fractional white noise and applications to finance[A]. Infinite Dimensional Analysis, Quantum Probability and Related Topics[J]. 2003,6 : 1 - 32.
  • 4Elton E J ,Gruber M J. Modern Portfolio Theory and Investment analysis[M]. New York:Wiley, 1995.
  • 5Bjork T, Hult H. A note on wick products and the fractional Black-Seholes model[J]. Mathematical Finance, 2005 , 9 : 197 - 209.
  • 6Thao T H. An approximate approach to fractional analysis for finance[J]. J. Nonlinear Analysis: Real Word Applications, 2006,7 : 124-132.
  • 7Nualart D, Alos E, Mazet O. Stochastic calculus with respect to fractional Brownian motion with Hurst index H<1/2 [J]. J. Stoch. Proc. Appl. ,2000,6:121-139.
  • 8Thao T H,Tnguyen T. Fractal langevin equation[J]. Vietnam,J. Math. ,2003,30:89-96.

同被引文献47

  • 1王俊,罗猛.简析等价鞅测度及其应用[J].统计与决策,2004,20(9):119-121. 被引量:1
  • 2刘韶跃,杨向群.分数布朗运动环境中欧式未定权益的定价[J].应用概率统计,2004,20(4):429-434. 被引量:50
  • 3邵宇.微观金融学及其数学基础[M].北京:清华大学出版社,2005.
  • 4ELLIOT R J, VAN DER HOEK J. A general white noise theory and applications to finance[J]. Math Finance,2003, 13(2) :301-330.
  • 5HU Y, OKSENDAL B. Fractional white noise calculus and applications to finance[J]. Infin Dimens Anal Quantum probab Relat,2003,6(1) : 1-32.
  • 6SATTAYATHAM P, INTRARASIT A, CHAIYASENA A P. A fractional-Black-Schole with jumps[J]. Vietnam JournaI of Mathematics,2007(35) : 1-15.
  • 7THAO T H. An approxiamte approach to fractional analysis for finance[J]. Nonlinear Analysis: Real World Applications, 2006(7) : 124-132.
  • 8SHREVE S E. Stochastic Calculus for Fianace Ⅱ [M]. Berlin: Springer,2004.
  • 9Elliot R J, Van Der Hoek J. A general fractional white noise theory and applications to finance[J] . Math Finance, 2003,13(2) : 301-330.
  • 10Hu Y, Oksendal B. Fractional white noise calculus and applications to finance[J]. Infin Dimens Anal Quantum Probab and Relat Top, 2003,6 : 1-32.

引证文献6

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部