期刊文献+

一类(k+1)-色有向图的本原指数

Primitive Exponents of a Class of (k+1)-colored Directed Graphs
下载PDF
导出
摘要 本文定义了一类具有(k+1)-色(k+1)-圈的有向图D(A),得到了它本原的充要条件,并给出了它的本原指数. In this paper, we define (k + 1) -colored directed graphs D with (k + 1) -cycles and show a necessary and suffcient condition for these directed graphs to be primitive,obtain the primitive exponent of directed graphs D at the same time.
出处 《应用数学》 CSCD 北大核心 2008年第4期778-786,共9页 Mathematica Applicata
基金 国家自然科学基金(60773131) 山西省自然科学基金(2008011010)
关键词 (k+1)-圈 (k+1)-色有向图 本原指数 (k + 1) -cycle (k + 1) -colored digraph Primitive exponent
  • 相关文献

参考文献5

  • 1Fornasini E,Valcher M E. Directed graphs 2D state model and characteristic polynomials of irreducible matrix pairs[J]. Linear Algebra and its Applications, 1997,263 ( 1-3):275 - 310.
  • 2Olesky D D, Shader B, Driessche P V. Exponents of tuples of nonnegative matrices[J]. Linear Algebra and its Applications,2002,356(1-3) : 123-134.
  • 3Jorgen B J, Gregory G. Digraphs Theory, Algorithms and Applications[M]. London: Springer-Verlag, 2001.
  • 4郭继文,王世英.一类只有3个圈的本原双色有向图[J].太原科技大学学报,2007,28(5):415-416. 被引量:2
  • 5原军,林上为,郭继文,王世英.一类本原双色有向图[J].山西大学学报(自然科学版),2007,30(3):318-321. 被引量:1

二级参考文献9

  • 1王世英,张国珍,杨爱民.平方根图(英文)[J].山西大学学报(自然科学版),2005,28(1):1-4. 被引量:4
  • 2SHADER B L,SUWILO S.Exponents of Nonnegative Matrix Pairs[J].Linear Algebra Appl,2003,363:275-293.
  • 3FORNASINI E,VALCHER M.Primitivity of Positive Matrix Pairs:Algebraic Characterization,Graph Theoretic Description,and 2D Systems Interpretation[J].SIAM J Matrix Annal Appl,1998,19:71-88.
  • 4FORNASINI E,VALCHER M.On the Spectral and Combinatorial Structure of 2D Positive Systems[J].Linear Algebra Appl,1996,245:223-258.
  • 5FORNASINI E,VALCHER M.Directed Graphs,2D State Models,and Charecteristic Polynomials of Irreducible Matrix Pairs[J].Linear Algebra Appl,1997,263:275-310.
  • 6SUWILO S.2-Exponents of 2-Digraphs[D].Dissertation,University of Wyoming,2001.
  • 7FORNASINI E,VALCHER M E.Driected graphs 2D state model and characteristic polynomials of irreducible matrix pairs[J].Linear Algebra and its Applications,1977,263:275-310.
  • 8JORGEN B J,GREGORY G.Digraphs theory,algorithms and applications[M].London:Springer-Verlag,2001.
  • 9SHADER B L,SUWILO S.Exponents of nonnegative matrix pairs[J].Linear Algebra and its Applications,2003,363:275-293.

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部