期刊文献+

两类半隐式随机Runge-Kutta方法 被引量:3

Two Classes of Semi-implicit Stochastic Runge-Kutta Methods
下载PDF
导出
摘要 本文针对一般的It随机微分方程,应用彩色树理论构造了两类稳定性较好的强1阶半隐式Runge-Kutta(RK)方法,数值实验证明了所得方法的精度和有效性. In this paper, two classes of semi-implicit Runge-Kutta methods with strong order 1 are presented for the strong solution of Ito stochastic differential equations. These methods have very large stability regions ,and the validity is testified in numerical test.
出处 《应用数学》 CSCD 北大核心 2008年第4期819-825,共7页 Mathematica Applicata
基金 国家自然科学基金(10571066)
关键词 随机微分方程 彩色树 RUNGE-KUTTA 均方稳定 Stochastic differential equations Colored rooted tree Runge-Kutta Meansquare stability
  • 相关文献

参考文献13

  • 1Mao X R. Stochastic Differential Equations and Their Applications[M]. Chichester: Horwood, 1997.
  • 2Kloeden P E, Platen E. Numerical Solution of Stochastic Differential Equations[M]. Berlin:Springer-Verlag,1992.
  • 3Nweton N J. Asymptotically efficient Runge-Kutta methods for a class of Ito and Stratonovich equations [J]. SIAM J. Appl. Math. ,1991,51(2):542-567.
  • 4Rumelin W. Numerical treatment of stochastic differential equations[J]. SIAM J. Numer. Anal. , 1982,19 (3) :604-613.
  • 5Burrage P. Runge-Kutta methods for stochastic differential equations [C]. Australia:University of Queensland, 1999.
  • 6Tian T H. Implicit numerical methods for stiff stochastic differential equations and numurical simulations of stochastic models[C]. Australia: University of Queensland,2001.
  • 7Rossler A. Runge-Kutta methods for the numerical solution of stochastic differential equations[C]. Germany: University of Darmstasdt, 2003.
  • 8Komori Y. Weak order stochastic Runge-Kutta methods for commutative stochastic differential equations [J]. J. Comput. Appl. Math. ,2007,203:57-79.
  • 9Butcher J. The Numerical Analysis of Ordinary Differential Equations[M]. New York: Wiley, 1987.
  • 10王志勇.随机泛函微分方程的稳态数值解研究[C].武汉:华中科技大学,2008.

同被引文献29

  • 1Mao X R. Stochastic Differential Equations and Their Applications. Chichester: Horwood Publishing Company, 1997.
  • 2Maruyama G. Continuous Markov processes and stochastic equations. Rendiconti del Circolo Matematico di PalermoRend. 1955, 4(1): 48-90.
  • 3Milstein G N. Approximate integration of stochastic differential equations. Theory of Proba- bility and its Applications. 1974, 19(3): 557-562.
  • 4Burrage K and Burrage P M. High strong order explicit Runge-Kutta methods for stochastic ordinary differential equations. Applied Numerical Mathematics. 1996, 22(1): 81-101.
  • 5Tian T H and Burrage K. Two-stage stochastic Runge-Kutta methods for stochastic differential equations. BIT. 2002, 42(3): 625-643.
  • 6Wang P. Three-stage stochastic Runge-Kutta methods for stochastic differential equations. Journal of Computational and Applied Mathematics. 2008, 222(2): 324-332.
  • 7Butcher J C. Numerical Methods for Ordinary Differential Equations. Chichester: John Wiley and Sons, 2003.
  • 8Komori Y, Mitsui T, Sugiura H. Rooted tree analysis of the order conditions of row-type scheme for stochastic differential equations. BIT Numerical Mathematics. 1997, 37(1): 43-66.
  • 9Burrage P M. Runge-Kutta methods for stochastic differential equations. University of Queens-land, 1999.
  • 10Burrage t(, Burrage P M. Order conditions of stochastic Runge Kutta methods by B-series. SIAM Journal Numerical Analysis. 2000, 38(5): 1626-1646.

引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部