期刊文献+

区域上Triebel-Lizorkin空间的分解(英文) 被引量:1

Decompositions of Triebel-Lizorkin Spaces on Domains
下载PDF
导出
摘要 文中引进了区域上的Triebel-Lizorkin空间,以及原子和分子的概念,为了更好的理解这些空间,我们得到了这类Triebel-Lizorkin空间的原子分解和分子分解.这些结论是调和分析中函数空间分解理论的补充和完善. The Triebel-Lizorkin spaces on domains, atoms and molecules are introduced. In order to understand the structure of these function spaces better, we obtain the atomic decomposition and molecular decomposition of the Triebel-Lizorkin spaces on domains. These results are the improvment of decompositions of functions in harmonic analysis.
出处 《应用数学》 CSCD 北大核心 2008年第4期826-834,共9页 Mathematica Applicata
基金 NNSF-china(10671115)
关键词 TRIEBEL-LIZORKIN空间 原子 分子 分解 区域 Triebel-Lizorkin space Atom Molecule Decomposition Domain
  • 相关文献

参考文献11

  • 1Bergh J ,Lofstrom J. Interpolation Spaces[M]. New York:Springer-Verleg, 1976.
  • 2Deng D G, Han Y S. Theory of Hp Spaces[M]. Beijing: Peking University Press, 1992
  • 3Frazier M,Jawerth B. Decomposition of Besov spaces[J]. Indiana Univ. Math. J. , 1985,34(4) : 777-798.
  • 4Frazier M,Jawerth B. The φ- transform and applications to distribution spaces[J]. Lecture Notes in Math, 1302:223-246.
  • 5Frazier M,Jawerth B. A discrete transform and decomposition of distribution spaces[J]. J. Funct. Analysis, 1990,93 : 34 - 170.
  • 6Gui Y Q,Lu S Z, Yang D C. Besov spaces Bp^1+p on domains and Laplace operators[J]. Acta Math. Scientia, 2002,22B(3) : 413-418.
  • 7Lee M Y. Lin C C. The molecular characterization of weighted Hardy spaces[J]. J. Funct. Analysis, 2002, 188:422-460.
  • 8Peeter J. New Thoughts of Besov Space[M]. Durharm:Duck University Math. Series I, 1976.
  • 9Stein E M. Singular Integrals and Differentiability Properties of Functions[M]. Princeton:Princeton University Press, 1970.
  • 10Stein E M. Harmonic Analysis: Real Variable Methods,Orthogonality and Oscillatory Integrals[M]. Princeton: Princeton University Press, 1993.

同被引文献2

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部