期刊文献+

基于分数阶傅立叶变换的ARM检测技术 被引量:3

ARM Detection Technique Based on Fractional Fourier Transform
下载PDF
导出
摘要 分数阶傅立叶变换(FRFT)是傅立叶变换的广义形式,对线性调频(LFM)信号具有很好的能量积累作用。针对反辐射导弹(ARM)雷达回波信号的线性调频特性,提出了一种基于FRFT的反辐射导弹检测方法,并根据ARM信号的调频特性将FRFT局域化,缩小了峰值搜索区域,提高了检测效率。仿真实验表明该方法能够在高斯、非高斯分布杂波环境下有效地检测ARM信号。 The fractional Fourier transform (FRFr) is a generalization of the Fourier transform. To the linear frequency modulation (LFM) signal, the FRFT is a good way for signal accumulation. Aiming at the linear frequency modulation characteristic of the antiradiation missile (ARM) echo signal, an improved method for ARM detection based on FRFr is proposed. The areas of peak search were reduced and the detection efficiency was improved when the FRFT was localized. The simulation experiments show that the reliable detection of ARM signal can be achieved with this method under the Gauss or non-Gauss clutter environment.
出处 《国防科技大学学报》 EI CAS CSCD 北大核心 2008年第5期90-93,共4页 Journal of National University of Defense Technology
基金 国家部委资助项目
关键词 反辐射导弹(ARM)检测 线性调频信号 分数阶傅立叶变换(FRFT) anti-radiation missile (ARM) detection linear frequency modulation (LFM) signal fractional Fourier transform(FRFT)
  • 相关文献

参考文献11

  • 1周晓峰,杨建军.反辐射导弹发展的新趋势及其对抗措施分析[J].飞航导弹,2006(4):3-6. 被引量:17
  • 2Atal B S, Hanauer S L. Speech Analysis and Synthesis by Linear Prediction of Speech Waves [J]. J. Acoust. Soc. Amer., 1971, 50(6):637- 655.
  • 3Duda R O,Hart P E. Pattern Classification and Scene Analysis [M]. New York: Wiley, 1973.
  • 4Zhao Y X. Gaussian Mixture Density Modeling of Non-Gaussian Source for Autoregressive Process [J]. IEEK Transactions on Signal Processing, 1995, 43(4) :894- 903.
  • 5文树梁.基于时频分布的反辐射导弹检测技术[J].航天电子对抗,2005,21(1):6-11. 被引量:3
  • 6张宏宽,陈建春,杨万海.基于Radon-Ambiguity变换的反辐射导弹检测识别技术[J].西安电子科技大学学报,2004,31(3):446-449. 被引量:6
  • 7Wang M, Chart A K. Linear Frequency-modulated Signal Detection Using Radon-ambiguity Transform [J]. IEEE Trans. on Signal Processing, 1998, 46(3): 571-586.
  • 8Namias V. The Fractional Order Fourier Transform and its Application to Quantum Mechanics [J]. J. Inst. Math. App., 1980, 25:241 - 265.
  • 9McBride A C, Keer F H. On Namias' Fractional Fourier Transform[J]. IMA. J. Appl. Math., 1987, 39:159 - 171.
  • 10Ozaktas H M, Arikan O, et al. Digital Computations of the Fractional Fourier Transform [J]. IEEE, Trans. Signal Processing , 1996, 44:2141-2150.

二级参考文献27

共引文献21

同被引文献42

引证文献3

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部