期刊文献+

基于证据熵对不确定性度量的决策表约简 被引量:1

Decision Table Reduction Based on Evidence Entropy for Uncertainty Measures
下载PDF
导出
摘要 知识约简是粗糙集理论的核心内容之一,产生的粗糙决策规则往往具有一定的不确定性。在变精度粗糙集的基础上,本文构造了符合证据理论框架的一组焦元,利用基本概率分配函数计算了证据的总体信息熵,度量了决策表的不确定性;以该度量作为启发信息,给出了决策表的启发式知识约简算法。计算实例表明了本文方法的有效性。 Knowledge reduction is one of the important topics in the research on rough set theory, and rough decision rutles are inevitably provided with uncertainty. In this paper, a family of focal sets is constructed within the framework of evidence theory on the basis of variable precision rough set theory. Accordingly, the function of basic probability assignment is defined, and then the total information entropy is calculated for evidence theory, namely the evidence entropy. Uncertainty measure for the decision table is determined by that entropy. Based on the measure, the heuristic algorithm is proposed for decision table reduction. Finally, the experimental results show the validity of the methodology.
出处 《国防科技大学学报》 EI CAS CSCD 北大核心 2008年第5期94-98,共5页 Journal of National University of Defense Technology
基金 国家部委资助项目(413270303)
关键词 变精度粗糙集 不确定性度量 证据熵 知识约简 variable precision rough set uncertainty measure evidence entropy knowledge reduction
  • 相关文献

参考文献10

  • 1Ziarko W. Variable Precision Rough Set Model[J]. Journal of Computer and System Sciences, 1993, 46(1) : 39 - 59.
  • 2Beynon M J, Driffield N. An Illustration of Variable Precision Rough Sets Model: An Analysis of the Findings of the UK Monopolies and Mergers Commission[J]. Computers and Operations Research, 2B35, 32(7): 1739- 1759.
  • 3Pawtak Z. Rough Sets and Intelligent Data Analysis[J]. Information Sciences, 2002, 147(1-4) : 1 - 12.
  • 4Wang G Y. Algebra View and Information View of Rough Sets Theory[C]//Proceedings of SPIE, 2001, 4384:200 - 207.
  • 5陈理渊,黄进.不确定度问题研究情况综述[J].电路与系统学报,2004,9(3):105-111. 被引量:5
  • 6宋立军,胡政,杨拥民,蔡畅.基于证据理论与粗糙集集成推理策略的内燃机故障诊断[J].内燃机学报,2007,25(1):90-95. 被引量:14
  • 7Marszaa-Paszek B, Paszek P. Evidence Theory and VPRS Model[J]. Electronic Notes in Theoretical Computer Science, 2003, 82(4) : 153- 163.
  • 8Pal N R, Be-zdek J C, Hemasinha R. Uncertainty Measures for Evidential Reasoning, II: A new measure of total uncertainty[J]. International Journal of Approximate Reasoning, 1993, 8:1 - 16.
  • 9Aczel J, Forte B, Ng C T. Why the Shannon and Hartley Entropies Are 'Natural'. Advances in Applied Probability, 1974, 6(1): 131 - 146.
  • 10王新峰,邱静,刘冠军.基于特征相关性和冗余性分析的机械故障特征选择研究[J].中国机械工程,2006,17(4):379-382. 被引量:7

二级参考文献58

  • 1Klir G J, Yuan B. Fuzzy sets and fuzzy logic [M]. New York: Prentice-Hall, 1995.
  • 2Pal N R. On quantification of different facets of uncertainty [J]. Fuzzy Sets and Systems, 1999, 107(1): 81-91.
  • 3Klir G J, Yuan B. On nonspecificity of fuzzy sets with continuous membership functions [A]. 1995 'Intelligent Systems for the 21st Century', IEEE International Conference in Systems, Man and Cybernetics [C]. 1995, 25-29.
  • 4Klir G J, Smith R M. On measuring uncertainty and uncertainty-based information: Recent developments [J]. Annals of Mathematics and Artificial Intelligence, 2001, 32(1-4): 5-33.
  • 5Harmanec D. Measures of Uncertainty and Information [M/OL]. Imprecise Probabilities Project, Cozman F G, Editor. 1998: Available from http://ippserv.rug.ac.be/.
  • 6Yager R R. On the entropy of fuzzy measures [J]. Fuzzy Systems, IEEE Transactions on, 2000, 8(4): 453-461.
  • 7Yager R R. Uncertainty representation using fuzzy measures [J]. Systems, Man and Cybernetics, Part B, IEEE Transactions on, 2002, 32(1): 13-20.
  • 8Higashi M, Klir G J. Measures of uncertainty and information based on possibility distributions [J]. International Journal of General Systems, 1983, 9(1): 43-58.
  • 9Shafer G. A mathematical theory of evidence [M]. New Jersey: Princeton University Press, 1976.
  • 10Dubois D, Prade H. On several representations of an evidence theory [A]. Gupta M, Sanchez E, ed. Fuzzy Information and Decision Processes [C]. North-Holland: Amsterdam. 1982, 309-322.

共引文献23

同被引文献14

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部