期刊文献+

关联规则挖掘中改进型Diffsets算法 被引量:1

Improved Diffsets Algorithm in Association Rules Mining
下载PDF
导出
摘要 频繁项集挖掘是关联规则挖掘中至关重要的一步。对于稠密数据集的频繁项集挖掘,传统的挖掘算法往往产生大量无用的中间结果,造成内存利用率的极大浪费,尤其是在支持度较低的情况下。Diffsets算法通过引入"差集"的概念,在一定程度上解决了挖掘过程中产生的大量中间结果与内存容量之间的矛盾。改进型Diffsets算法是在原算法的基础上,在差集运算过程中根据差集中所包含的事务标识个数进行递减排序,进一步减少了挖掘过程中产生的中间结果数量。分析与实例表明,改进后的算法在执行过程中将占用更少的内存空间,加快了算法的收敛速度。 Mining frequent items is a key step in association rules mining. As to the mining frequent items of dense datasets, the traditional mining algorithm always turn out a great deal of useless intermediate results which occupies a large proportion of the memory, especially in a low values of support. Diffsets algorithm introduces the conception of differences,and to some extent,it provides a solution of dealing with the contradiction between those multiintermediate results and the memory capacity. This improved Diffsets algorithm on the basis of original algorithm ranks the number of tids in a degressive way during the the calculation course,in this way,the amount of intermidiate results can be decreased. The analysis and examples show that this imporved algorithm takes less memory space in the operation process and accelerates the convergence pace of the algorithm.
出处 《现代电子技术》 2008年第22期80-83,87,共5页 Modern Electronics Technique
基金 宁夏自然科学基金资助项目(NZ0697) 宁夏高等学校科学技术研究项目(2006JY018)
关键词 数据挖掘 关联规则挖掘 频繁项集挖掘 Diffsets data mining association rules mining mining frequent items Diffsets
  • 相关文献

参考文献11

  • 1PANG NING TAN,MICHAEL STEINBACH,VIPIN KUMAR,数据挖掘导论[M].范明,范宏建,译.北京:人民邮电出版社,2006.
  • 2Agrawal R, Mannila H, Srikant R, et al. Fast Discovery of Association Rules[J]. Advances in Knowledge Discovery and Data Mining, AAAI Press, Menlo Park, CA, 1996 : 307 - 328.
  • 3Rakesh C Agrawal, Charu C Aggarwal, Prasad V V V. Depth First Generation of Long Patterns[J]. In Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD- 2000),2000:108 - 118.
  • 4Bayardo R J. Efficiently Mining Long Patterns from Databases Proc[C]. 1998 ACM- SIGMOD Int'l Conf. Management of Data (SIGMOD '98), 1998:85 - 93.
  • 5Zaki M J, Gouda K. Fast Vertical Mining Using Diffsets[Z]. In Proc. of ACM SIGKDD'03. Washington,DC: 2003.
  • 6Zaki M J. Scalable Algorithms for Association Mining[J]. IEEE Transactions on Knowledge and Data Engineering, 2000,12(3):372 - 390.
  • 7Zaki M J. Generating Non- redundant Association Rules [C]. In 6th ACM SIGKDD Int'l Conf. Knowledge Discovery and Data Mining, 2000.
  • 8Omiecinsky E, Sarasere A, Navathe S. An Efficient Algorithm for Mining Association Rules in Large Databases[J].In Proc. of the 21 st VLDB Conference, Zurich, Switzerland, 1995:432 - 444.
  • 9Shenoy P, Haritsa J R, Sudarshan S, et al. Turbo - charging Vertical Mining of Large Databases[C]. In ACM SIGMOD Intl. Conf. Management of Data, 2000.
  • 10Zaki M J. Scalable Algorithms for Association Mining[J]. IEEE Transactions on Knowledge and Data Engineering, 2000,12(3) : 372 - 390.

二级参考文献6

  • 1胡吉明,鲜学丰.挖掘关联规则中Apriori算法的研究与改进[J].计算机技术与发展,2006,16(4):99-101. 被引量:59
  • 2Agrawal R,Imielinski T,Swami A.Mining Association Rules between Sets of Items in Large Database[A].Proceedings of the 1993 ACM -SIGMOD International Conference on Management of Data[C].Washington DC,USA,1993:207-216.
  • 3Agrawal R,Srikant R.Fast Algorithm for Mining Association rules[A].In:Proceedings of the 20th International Conference on VIDB[C].Santiago,Chile,1994:487-499.
  • 4Brian Lent,Arun N Swami,Jennifer Widom.Clustering Association Rules Alex Gray,Per-Ake Larson.Proceedings of the Thirteenth International Conference on Data Engineering.(ICDE'97),Birmingham,England,1997.IEEE.Computer.Society.Press Publisher,1997:220-231.
  • 5冯玉才,冯剑琳.关联规则的增量式更新算法[J].软件学报,1998,9(4):301-306. 被引量:227
  • 6蔡之华,颜雪松,李晖.挖掘关联规则的并行算法研究[J].计算机应用研究,2002,19(2):9-11. 被引量:7

共引文献13

同被引文献2

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部