期刊文献+

Schwarzschild时空中的标量场方程

Real Scalar Field in Schwarzschild Spacetime
下载PDF
导出
摘要 考察了Schwarzschild时空中标量场方程的数值解(Φ=0).根据该度规下的乌龟坐标x(r)的形式,引进一条正切曲线来近似模拟乌龟坐标x(r)的曲线,从而得到以x为自变量的函数r(x)和势函数V(x),用Maple软件解出标量场方程的数值解并画出波函数的图象. In the paper, the real scalar field equation in Schwarzschild spacetime is solved numerically ( □Ф = 0). By generalizing the "tortoise" coordinate(r), a "tangent" approximation is introduced to invert the relationship between r and x so as to exprexs the potential V(x). By using Maple software, the scalar field equation is solved numerically, and the field amplitude is shown graphically.
出处 《沈阳师范大学学报(自然科学版)》 CAS 2008年第4期418-420,共3页 Journal of Shenyang Normal University:Natural Science Edition
关键词 Schwarzschild时空 标量场 乌龟坐标 Schwaraschild spaeetime scalar fields tortoise coordinate
  • 相关文献

参考文献8

  • 1BREVIL I, SIMONSEN B. The Scalar Field Equation in Schwarzschild-de Sitter Space[J]. Gen. Rel. Gray. , 2001,33 (10) : 1839-1861.
  • 2TIAN Jianxiang, GUI Yuanxing, GUO Guanghai, et al. The Real Scalar Field in Schwarzschild-de Sitter Spacetime[J ]. Gen. Rel. Gray. , 2003,35(8) : 1473-1480.
  • 3LV Yan, GUI Yuanxing. Scattering of Dirac waves off Schwarzschild-de Sitter black hole[J ]. IL NUOVO CIMENTO B, 2004,119(5) :453-462.
  • 4GUO Guanghai, GUI Yuanxing, TIAN Jianxiang. Scalar Field at the Phase Transition Point of RNdS Space[J]. Chin. Phys. Lett., 2005,22(4) :820-823.
  • 5GUO Guanghai, GUI yuanxing, TIAN Jianxiang. The real scalar field in extreme RNdS space[J]. Gen. Rel. Grav., 2005,37(7) :1323-1330.
  • 6吕嫣,方戈亮,徐琦.Schwarzschild-de Sitter度规下旋量场方程的解[J].沈阳师范大学学报(自然科学版),2006,24(4):426-429. 被引量:2
  • 7LV Yan, GUI Yuanxing. Numerical Solution of Dirac Equation in Schwarzschild-de Sitter Spacetime[J]. Phys. Scr. , 2007,75(2) :152-156.
  • 8LV yan, GUI Yuanxing. Semi-Analytical Solution of Dirac Equation in Sehwarzschitd-de Sitter Spacetime[J]. Int. J. Theo. Phys., 2007,46(6) : 1596-1616.

二级参考文献12

  • 1曾谨言.量子力学[M].北京:科学出版社,2001..
  • 2刘辽 许殿彦.Dirac粒子的Hawking蒸发[J].物理学报,1980,29(12):1617-1624.
  • 3赵峥 桂元星 刘辽.在Kerr—Newman时空中Dirac粒子的Hawking蒸发[J].天体物理学报,1981,1(2):141-148.
  • 4许殿彦.Kerr—Newman时空中荷电Dirac粒子的Hawking辐射[J].物理学报,1983,32(2):225-237.
  • 5MUKHOPADHYAY B,CHAKRABARTI S K.Semi-analytical solution of Dirac equation inSchwarzschild geometry[J].Class Quant Grav,1999,16:3165-3181.
  • 6MUKHOPADHYAY B,CHAKRABARTI S K.Solution of Dirac equation around a spinning blackhole[J].Nucl Phys B,2000,582:627-645.
  • 7CHAKRABARTI S K,MUKHOPADHYAY B.Dirac equation in Kerr geometry and itssolution[J].Nuovo Cimento B,2000,115:885-896.
  • 8CHAKRABARTI S K,MUKHOPADHYAY B.Scattering of Dirac Waves off Kerr Black Holes[J].MonNot Roy Astron Soc,2000,317:979-984.
  • 9S.K.Charkrabarti.On mass-dependent spheroidal harmonics of spin one-half[J].Proc R SocLond A,1984,391:27-38.
  • 10CHANDRASEKHAR S.The Mathematical Theory of Black Holes[M].New York:Oxford UniversityPress,1983.

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部