期刊文献+

面向无线传感器网络节点定位的自适应卡尔曼滤波算法收敛条件分析 被引量:1

Convergence of Locating Nodes' Positions in Wireless Sensor Networks in a Complex Environment
下载PDF
导出
摘要 分析了新息序列是有色噪声时自适应卡尔曼滤波算法(Adaptive Kal man Filter,AKF)的滤波效果,在范数意义下,证明了k时刻AKF算法中估计误差协方差矩阵和k时刻最优KF算法中估计误差协方差矩阵间距离与新息序列相关性成正比。利用上述结论,证明了所有AKF算法中估计误差协方差矩阵必逐渐远离1时刻最优KF算法中估计误差协方差矩阵。总结上述结论,发现AKF算法收敛条件可描述成以下几个等价命题:1)AKF算法中估计误差协方差矩阵与1时刻最优KF算法中估计误差协方差矩阵差有极限;2)k时刻AKF算法中估计误差协方差矩阵和k时刻最优KF算法中估计误差方差矩阵间距离极限是0;3)AKF算法渐进收敛于k时刻最优KF算法;4)AKF算法中新息序列渐进收敛于白噪声序列;5)k时刻AKF算法中滤波增益矩阵与k时刻最优KF算法中滤波增益矩阵间距离极限是0。上述理论为最终解决复杂环境下无线传感器网络节点定位问题奠定了基础。 The filtering effects are analyzed when the innovations' series in an adaptive Kalman filter(AKF) is colored noise. Taken the matrix norm as a tool, it is proved that at time k, the distance between the covariance matrix in the AKF and the covariance matrix in the kth optimal KF is in proportion to the innovations' correlation. Then, it is derived that covariance matrices in all AKFs are gradually away from the covariance matrix in the 1th optimal KF based on the above-mentioned conclusions. At last, it is summarized that convergent conditions of AKFs are: 1 The difference between the covariance matrix in an AKF and the covariance matrix in the 1th optimal KF has limit value; 2 At time k, the limit value of the distance between the covariance matrix in an AKF and the covariance matrix in the kth optimal KF is zero; 3 The AKF is gradually convergent to the kth optimal KF; 4 The innovations' series is gradually convergent to white noise; 5 At time k,the limit value of the distance between the gain matrix in an AKF and the gain matrix in the kth optimal KF is zero. These theories found groundworks for perfectly locating nodes' positions in wireless sensor networks.
出处 《计算机科学》 CSCD 北大核心 2008年第10期49-52,共4页 Computer Science
关键词 无线传感器网络 节点定位 自适应卡尔曼滤波算法 滤波性能分析 滤波收敛性 Wireless sensor network, Localization, Adaptive kalman filter, Filtering effect, Filtering convergence
  • 相关文献

参考文献19

  • 1Capkun S, Hamdi M, Hubaux J P. GPS-free Positioning in Mobile Ad-hoc Networks. Cluster Computing, 2002 : 157-167
  • 2Iyengar R,Sikdar 13. Scalable and Distributed GPS Free Positioning for Sensor Networks//Proc. of IEEE Int'l Conf. on Communications 2003. vol. 1, Anchorage: IEEE Communications Society, 2003 : 338-342
  • 3Bergamo P, Mazzini G. Localization in Sensor Networks with Fading and Mobility//Proc. of the 13th IEEE Int'l Syrup. on Personal, Indoor and Mobile Radio Communications. Lisbon: IEEE Communications Society, 2002 : 750-754
  • 4Savvides A,Park H, Srivastava M B. The Bits and Flops of the N-hop Multilateration Primitive for Node Localization Problems //Proc. of the 1st ACM Int' 1 Workshop on Wireless Sensor Networks and Applications. Atlanta: ACM Press, 2002
  • 5Shang Y,Ruml W,Zhang Y, et al. Localization from Mere Connectivity//Proc, of the 4th ACM Int'l Syrup. on Mobile Ad Hoc Networking & Computing. Annapolis: ACM Press, 2003: 201- 212
  • 6Taylor C, Rahimi A, Bachrach J, et al. Simultaneous Localization and Tracking in an Ad-hoc Sensor Network//Proc. of the Fourth International Symp. on Information Processing in Sensor Networks. UCLA, Los Angeles, California, USA, 2005
  • 7Hu C W, Chen W, Chen Y Q, et al. Adaptive Kalman Filtering for Vehicle Navigation. Journal of Global Positioning Systems, 2003,2(1) :42-47
  • 8耿延睿,崔中兴,张洪钺,房建成.衰减因子自适应滤波及在组合导航中的应用[J].北京航空航天大学学报,2004,30(5):434-437. 被引量:22
  • 9周东华,席裕庚,张钟俊.一种带多重次优渐消因子的扩展卡尔曼滤波器[J].自动化学报,1991,17(6):689-695. 被引量:192
  • 10Mehra R K. On the Identification of Variances and Adaptive Kalman Filtering. IEEE Transactions on Automatic Control, 1970,15(2) : 175-184

二级参考文献19

  • 1徐景硕,秦永元,彭蓉.自适应卡尔曼滤波器渐消因子选取方法研究[J].系统工程与电子技术,2004,26(11):1552-1554. 被引量:68
  • 2[2]Xia Qijun, Rao Ming. Adaptive fading Kalman filter with an application[J]. Automafica, 1994, 30(8): 1333 ~ 1338
  • 3[5]Da R, Lin C F. Failure detection and isolation structure for global positioning system autonomous integrity monitoring [J]. Journal of Guidance, Control, and Dynamics, 1995,18(2)
  • 4周东华,控制与决策,1990年,5卷,1页
  • 5J.F.Chicharo, H.Wang, “Power System Harmonic Signal Estimation and Retrieval for Active Power Filter Applications”, IEEE Transactions on Power Electronics, Vol.9, 1994, pp. 580-586.
  • 6E. A. A. AI-Feilat, I. EI-Amin, M. Bettayeb,“Power System Harmonic Estimation: A Comparative Study”, Electric Power Systems Research, 29 (1994), pp. 91-97.
  • 7A. A. Girgis, W. B. Chang, E. B Makram, “A Digital Recursive Measurement Scheme for On-line Tracking of Power System Harmonics”, IEEE Transaction on Power Delivery, Vol.6, No.3, July 1991, pp. 1153-1160.
  • 8P. K. Dash, A.M. sharaf,“A Kalman filtering Approach for Estimation of Power System Harmonics in Power Systems”, (ICHPS), 1988, Nashville, India, pp. 34-40.
  • 9Steven Liu, “An adaptive Kalman filter for dynamic estimation of harmonic signals”, Proc. Intern. Conf. On Harmonics and Quality of Power ICHQP'98, Athens, Greece,October 14-16, 1998, pp 636-640.
  • 10R. K. Mehra,“ On the Identification of Variances and Adaptive Kalman Filtering”, IEEE Transactions on Automatic Control, Vol. 'AC-15, No.2,1970, pp. 175-184.

共引文献239

同被引文献5

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部