期刊文献+

基于WordNet的本体澄清 被引量:4

Ontology Clarification by Using WordNet
下载PDF
导出
摘要 由于本体能够消除概念的混淆和重用知识,因此它的质量对于语义网技术的应用非常重要。为了提高本体的质量,很多的工作集中在概念建模,但是本体表示这个非常重要的方面一直被忽视。目前本体的表示使用的是词(term),但同一个词可能有很多不同的意思,这样在基于本体的应用时将导致不清楚或错误的理解。为了解决这个问题,使用定义在WordNet中的词义(sense)而不是词来作为本体的表示,其原因是词义只有唯一的意思。本体澄清的定义为利用目标词周围的本体元素和被它标注的文档附近的词,对目标词进行自动消歧的过程。通过计算目标词义和它的邻居词的语义相似度,语义相关度最大的词义将选为正确的词义。实验表明,我们的算法有很好的性能。与最好的消歧算法相比,概念(Concept)精度差不多是名词精度的2倍,关系(Property)精度差不多是动词精度的3倍。实验证明了我们的算法在半自动的本体净化过程中也是非常有效的。 Semantic Web technology highly depends on the quality of ontology as it reduces or eliminates conceptual confusion and reuses knowledge. In order to enhance quality of ontology, a vast amount of research has focused on concept modeling task, but there is one major problem with lexical representation of ontology. Current lexical representation is term which may have different meanings; this can result in frustrating misunderstanding and ambiguity during the management and application of ontology. To solve this problem, sense is used to replace term as the lexical representation of concepts and properties for its unique meaning. We call ontology clarification the process of automatically disambiguating terms in ontology by using its surrounding ontology elements and its nearby terms in annotated documents using this ontology. The right sense is assigned to a target term by maximizing the relatedness between the target and its neighbors for semantic relatedness between them. Experiments show our ontology clarification method has good performance. Comparing with the best word sense disambiguation method, the concept precision is almost 2 times than the precision of noun,and the property precision is almost 3 times than the precision of verb. The last experiment proves that our method is also effective in a semi-automatic ontology clarification process.
出处 《计算机科学》 CSCD 北大核心 2008年第10期145-147,185,共4页 Computer Science
基金 国家自然科学基金资助项目(60675015)资助
关键词 本体澄清 语义相关度 消歧 Ontology clarification, Semantic relatedness, Word sense disambiguation
  • 相关文献

参考文献8

  • 1Ushold M, Gruninger M. Ontologies.. Principles, methods and applications. The Knowledge Engineering Review, 1996,11 ( 2 ) : 93-136
  • 2Guarino N. Formal ontology and information systems//Proc, of the 1st Int'l Conf. on Formal Ontologies in Information Systems (FOIS98). Trento, Italy, IOS Press, 1998 : 3 15
  • 3Fellbaum C. Wordnet : An Electronic Lexical Database. Cambridge: MIT Press, 1998
  • 4Missikoff M, Navigli R, Velardi P. Integrated approach to Web ontology learning and engineering. IEEE Computer, 2002, 35 (11):60-63
  • 5NavigliR, Velardi P, Gangemi A. Ontology learning and its application to automated terminology translation. IEEE Intelligent Systems, 2003,18 (1) : 22-31
  • 6Banerjee S, Pedersen T. Extended gloss overlaps as a measure of semantic relatedness//Proceedings of the Eighteenth International Joint Conference on Artificial Intelligence. Acapulco, 2003 : 805-810
  • 7Pedersen T , Banerjee S , Patwardhan S. Maximizing Semantic Relatedness top erform Word Sense Disambiguation. research report umsi 2005/25. Supercomputing Institute, University of Minnesota, 2005
  • 8Sleator D, Temperley D. Parsing English with a Link Grammar. technical report. CMU-CS-91-196. Carnegie Mellon University, 1991

同被引文献39

  • 1杜小勇,李曼,王珊.本体学习研究综述[J].软件学报,2006,17(9):1837-1847. 被引量:242
  • 2张蕾.语义Web本体语言及OWL研究[J].成都信息工程学院学报,2007,22(2):161-165. 被引量:9
  • 3由丽萍,杨翠.汉语框架语义知识库概述[J].电脑开发与应用,2007,20(6):2-4. 被引量:8
  • 4Carl Adam Pctri. Communication with Automata [ D ]. Darms tadt: University of Technology, 1962.
  • 5George A, Miller. Christiane Fellbaum. WordNet Then and Now [ J]. Lang Resources & Evaluation .2007 ( 41 ) :209 - 214.
  • 6Richardson S D, W B Dolan,L Vanderwende. MindNet: Acqui- ring and Structuring Semantic Information from Text[ J]. In Pro- ceedings of Aclcoling. Montreal, 1998 : 1098-1102.
  • 7Charles J. Fillmore. Frames and the Semantics of Understanding [ J ]. Quademi di Semantica, 1985 ( 2 ).
  • 8Liping You, Tao Liu, Kaiying Liu. Chinese FrameNet and OWL Representation [ C ]. In : Proceedings of 6th International Conference on Advanced Language Processing and Web Informa- tion Technology( ALPIT 2007 ), 2007, 8.
  • 9MILLER G A, FELLBAUM C. WordNet then and now [J]. Lang Resources & Evaluation, 2007 (41) : 209-214.
  • 10RICHARDSON S D, DOLAN W B, VANDERWENDE L. MindNet: acquiring and structuring semantic information from text [ C] //Proceedings of Aclcoling. Montreal, 1998 : 1098-1102.

引证文献4

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部