期刊文献+

可重叠矩形多值图像表示及其上的几何矩生成

Overlapping Rectangle Multi-valued Image Representation and its Application in Geometric Moments Generation
下载PDF
导出
摘要 为了支持快速的多值图像运算,提出了一种无损多值图像表示方法,称为可重叠矩形多值图像表示(Overlapping Rectangle Multi-valued I mage Representation,ORMIR)。ORMIR采用递归方式将一幅多值图像分割为具有不同基础颜色的可重叠矩形,并使用孩子兄弟树来组织这些矩形,通过弱化二值图像块表示中同一矩形所覆盖的所有像素必须具有相同颜色的约束,ORMIR能够使用较少的矩形无损地表示一幅多值图像,因而基于ORMIR的多值图像运算能够被快速实现。基于ORMIR,提出了一个多值图像几何矩生成算法,该算法首先生成多个仅包含一个矩形区域的二值图像的几何矩,然后将这些几何矩加权求和得到原始多值图像的几何矩。试验结果表明,基于ORMIR的几何矩生成算法能够以每秒50帧以上的速度计算8比特位深的512×512的灰度图像直到3+3阶的几何矩,从而满足实时应用的需要。 A lossless multi-valued image representation, referred as to Overlapping Rectangle Multi-valued Image Representation (ORMIR) was presented in this paper for the fast generation of geometric moments of multi-valued images. ORMIR divides a multi-valued image into some overlapping rectangles with some basic colors and settles these rectangles in a child-sibling tree. By impairing the constraint in Image Block Representation where all the pixels covered with a distinct rectangle must have the same color, ORMIR has reduced significantly the number of the rectangles required to represent a multi-valued image, hence is able to speed up image operations such as geometric moment generation. Based on ORMIR, a fast algorithm to generate geometric moments of multi-valued images was presented, which firstly generates all the geometric moments of a corresponding set of binary images with only one rectangular region and then sums up these moments by some weight in order to obtain the geometric moments of the original multi-valued image. The experimental results show that the algorithm is capable of generating the geometric moments up to order 3+3 of a 512× 512 8 bits gray image beyond a speed of 50 frames per second and therefore, it is competent to geometric moments generation in real-time applications.
出处 《计算机科学》 CSCD 北大核心 2008年第10期204-207,214,共5页 Computer Science
基金 国家高技术研究发展计划(2006AA04Z211)
关键词 数据结构 多值图像表示 图像块表示 可重叠矩形 几何矩 Data structure, Multi-valued image representation, Image block representation, Overlapping rectangle, Geometric moments
  • 相关文献

参考文献19

  • 1Golomb S W. Run length Encodings. IEEE Transactions on Information Theory, 1966,IT-12 : 399-401
  • 2Radson D, Boyd H A. Graphical Representation of Run Length Distributions. Quality Engineering,2005,17(2):301-308
  • 3Kaneko T, Okudaira M. Encoding of Arbitrary Curves Based on the Chain Code Representation. IEEE Transactions on Communications, 1985 ,COM-33(7) : 697-707
  • 4Wagenknecht G. A Contour Tracing and Coding Algorithm for Generating 2D Contour Codes from 3D Classified Objects. Pattern Recognition, 2007,40(4) : 1294-1306
  • 5Hunter G M. Operations on Images Using Quad Trees. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1979,1(2):145-153
  • 6Samet H. Region Representation : Quadtrees from Binary Ar - rays. Computer Graphics and Image Processing, 1980, 13 (1): 88- 93
  • 7Gargantini I. An Eftective Way to Represent Quadtrees. Communications of the ACM, 1982,25 (12): 905-910
  • 8Aoki M. Rectangular Region Coding for Binary Image Data Compression. Pattern Recognition, 1979,11 (5/6) : 297-312
  • 9Mohamed S A, Fahmy M M. Binary Image Compression Using Efficient Partitioning into Rectangular Regions. IEEE Transactions on Communications, 1995,43(5):1888-1893
  • 10Zahir S, Naqvi M. A New Rectangular Partitioning Based Lossless Binary Image Compression Scheme// Proceedings of Conference on Electrical and Computer Engineering. Saskatoon, Canada, 2005 : 281-265

二级参考文献14

  • 1宋克欧,黄凤岗,朱铁一.二值图像目标质心快速下降迭代搜索算法[J].模式识别与人工智能,1994,7(2):143-149. 被引量:8
  • 2Dai M, Baylou P, Najim M. An efficient algorithm for computation of shape moments from run-length codes or chain codes[J]. Pattern Recognition, 1992, 25(10): 1119~1128
  • 3Li B C. A new computation of geometric moments[J]. Pattern Recognition, 1993, 26(1): 109~113
  • 4Philips W. A new fast algorithm for moment computation[J]. Pattern Recognition, 1993, 26(11): 1619~1621
  • 5Li B C, Shen J. Fast computation of moment invariants[J]. Pattern Recognition, 1991, 24(8): 807~813
  • 6Yang Luren, Albregtsen Fritz. Fast and exact computation of Cartesian geometric moments using discrete Green's theorem[J]. Pattern Recognition, 1996, 29(7): 1061~1073
  • 7Zakaria M F, Vroomen L J, Zsombor-Murray P L A,et al. Fast algorithm for the computation of moment invariants[J]. Pattern Recognition, 1987, 20(6): 639~643
  • 8Fu C W, Yen J C, Chang S. Calculation of moment invariants via Hadamard transform[J]. Pattern Recognition, 1993, 26(2): 287~294
  • 9Belkasim S, Kamel Mohamed. Fast computation of 2-D image moments using biaxial transform[J]. Pattern Recognition, 2001, 34(9): 1867~1887
  • 10Singer M H. A general approach to moment calculation for polygons and line segments[J]. Pattern Recognition, 1993, 26(7): 1019~1028

共引文献31

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部