期刊文献+

幂等矩阵的组合的零度与秩(英文) 被引量:11

THE NULLITY AND RANK OF COMBINATIONS OF IDEMPOTENT MATRICES
下载PDF
导出
摘要 本文研究了两个幂等矩阵P与Q的组合aP+bQ-cPQ(a≠0,b≠0)的秩.利用矩阵的核子空间及线性空间的同构的有关性质,得到了:当c=a+b时,aP+bQ-cPQ的秩为一个常数,且等于P-Q的秩;当c≠a+b时,aP+bQ-cPQ的秩为一个常数,且等于P+Q的秩,推广了J.J.Koliha和V.Rakoei[3]的结果. The paper researches the rank of the combinations of two idempotent matrices P and Q,i.e.,the rank of aP+bQ-cQP(where a,b,c∈C,a≠0,b≠0).By using the properties of the nullspace of the matrix and isomorphisms of the linearspace,we get that the rank of aP+bQ-cPQ is a constant and is equal to the rank of P-Q when c=a+b,elsewise equal to the rank of P+Q when c≠a+b,which generalize the results of J.J.Koliha and V.Rakoceic.
作者 左可正
出处 《数学杂志》 CSCD 北大核心 2008年第6期619-622,共4页 Journal of Mathematics
关键词 幂等矩阵 零度 idempotent matrix rank nullity
  • 相关文献

参考文献5

  • 1Baksalary J. K. , Baksalary O. M.. Nonsingularity of Linear combinations of idempotent matrices[J]. Linear Algebra Appl. , 2004,388:25-29.
  • 2Groβ J. , Trenkler G.. Nonsingularity of the difference of two oblique projectors[J]. SIAM J. Matrix Anal. Appl. , 1999,21:390-395.
  • 3Koliha J. J. , Rakoceic V.. The nullity and rank of linear combinations of idempotent matrices[J]. Linear Algebra Appl. , 2006,418 : 11-14.
  • 4Koliha J. J. , Rakoceic V. , I. Straskraba.. The difference and sum of projectors[J]. Linear Algebra Appl. , 2004, 388:279-288.
  • 5Marsaglia G. , styan G. P. H.. Equalities and inequalities for the rank of matrices[J]. Linear and Mutilinear Algebra. , 1974, 2:269-292.

同被引文献9

引证文献11

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部