摘要
本文研究了两个幂等矩阵P与Q的组合aP+bQ-cPQ(a≠0,b≠0)的秩.利用矩阵的核子空间及线性空间的同构的有关性质,得到了:当c=a+b时,aP+bQ-cPQ的秩为一个常数,且等于P-Q的秩;当c≠a+b时,aP+bQ-cPQ的秩为一个常数,且等于P+Q的秩,推广了J.J.Koliha和V.Rakoei[3]的结果.
The paper researches the rank of the combinations of two idempotent matrices P and Q,i.e.,the rank of aP+bQ-cQP(where a,b,c∈C,a≠0,b≠0).By using the properties of the nullspace of the matrix and isomorphisms of the linearspace,we get that the rank of aP+bQ-cPQ is a constant and is equal to the rank of P-Q when c=a+b,elsewise equal to the rank of P+Q when c≠a+b,which generalize the results of J.J.Koliha and V.Rakoceic.
出处
《数学杂志》
CSCD
北大核心
2008年第6期619-622,共4页
Journal of Mathematics
关键词
幂等矩阵
秩
零度
idempotent matrix
rank
nullity