期刊文献+

具非正则奇异性的偏微分方程的形式解(Ⅱ)

FORMAL SOLUTIONS OF FIRST ORDER TOTALLY CHARACTERISTIC TYPE PDE WITH IRREGULAR SINGULARITY
下载PDF
导出
摘要 本文研究了具非正则奇异性的一阶全特征型偏微分方程的形式幂级数解.利用待定系数法证明了形式幂级数解的存在唯一性,并给出了其Gevrey类指标的计算公式. The solutions of first order totally characteristic type PDE with irregular singularity is not holomorphic,but there is the unique formal solution belonging to the Gevrey class.We discuss the formal solutions of two different first order totally characteristictype PDEs with irregular singularity,and prove these solutions belong to the Gevrey class.
出处 《数学杂志》 CSCD 北大核心 2008年第6期642-646,共5页 Journal of Mathematics
基金 国家自然科学基金资助项目(10401028)
关键词 非正则奇性全特征型偏微分方程 Gevrey类 形式解 totally characteristic type PDE irregular singularity Gevrey class the formal solutions
  • 相关文献

参考文献1

二级参考文献5

  • 1Gerard R,Tahara H.Nonlinear singular first order partial differential equations of Briot-Bouquet type[].Proceedings of the Japan Academy.1990
  • 2Gerard R,Tahara H.Singular nonliear partial differential equations[]..1996
  • 3Tahara H.Fuchsian type equations and Puchsian hyperbolic equations[].Japanese Journal of Mathematics.1979
  • 4Hormmander L.Linear partial differential operators[].Springer.1963
  • 5Baouendi M S,Goulaouic C.Cauchy problems with characteristic initial hypersurface[].Communications on Pure and Applied Mathematics.1983

共引文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部