摘要
本文研究了R(L)弱诱导空间的性质及其与R(L)底空间在连通性方面的关系.利用文献[4]中I(L)弱诱导空间引入了R(L)弱诱导空间概念,得到了R(L)弱诱导空间的本质刻划定理.它表明:R(L)弱诱导空间是连通的当且仅当其R(L)底空间是连通的.
The properties of weakly R(L)-induced spaces and the relationship between weakly R(L)-induced spaces and R(L)underlying spaces in connectedness are investigated.Using the concept of weakly I(L)-induced spaces in paper [4],we introduce the concept of weakly R(L)-induced spaces and present a representable theorem of weakly R(L)-induced spaces.The result shows that weakly R(L)-induced spaces are connected iff its R(L)underlying spaces are connected correspondingly.
出处
《数学杂志》
CSCD
北大核心
2008年第6期677-680,共4页
Journal of Mathematics