期刊文献+

氢气催化复合器对核电厂严重事故的缓解效果 被引量:5

Hydrogen Removal Effects of Passive Catalytic Recombiners to Mitigate Severe Accident in Nuclear Power Plant
下载PDF
导出
摘要 在严重事故条件下,安全壳内的氢气燃烧或爆炸威胁安全壳完整性,必须采取措施减小或消除安全壳的氢气风险。针对600MWe级核电厂的大型干式安全壳,以小破口失水诱发的严重事故序列为基准事故,计算分析了氢气催化复合器(PAR)消除安全壳内氢气的效果,及复合效应对安全壳压力温度的影响。研究表明:氢气催化复合器能够持续稳定地消除安全壳内氢气.但对于极其快速的氢气释放,它的消氢能力受到一定限制。 Under severe accident conditions, the integrity of containment is threaten by hydrogen deflagration or detonation, and measures must be implemented to mitigate or eliminate the hydrogen risk. For the specific 600 MWe nuclear power plant with largedry containment, the small-break loss-of-coolant-accident (SB-LOCA) was calculated, and the removal effects of passive autocatalytic recombiners and their impacts on the containment pressure and temperature were analyzed. The results show that catalytic recombination can remove hydrogen in containment continually and steadily, however, its capability is somewhat limited for large quick hydrogen release.
作者 邓坚 曹学武
出处 《原子能科学技术》 EI CAS CSCD 北大核心 2008年第10期906-910,共5页 Atomic Energy Science and Technology
关键词 严重事故 大型干式安全壳 氢气控制 非能动催化复合器 severe accident large-dry containment hydrogen control passive autocatalytic recombiner
  • 相关文献

参考文献8

二级参考文献8

  • 1[1]HAF102-2004,核动力厂设计安全规定[S].
  • 2[2]James M Taylor,SECY-93-087,Policy Issue (Notation Vote),Technical and Licensing Issues Pertaining to Evolutionary and Advanced Light Water Reactor (ALWR) Designs[S],United States Nuclear Regulatory Commission,1993 April.
  • 3[3]ALWR Utility Requirements Document[R],Electric Power Research Institute,1996.
  • 4IAEA. Mitigation of Hydrogen Hazards in Water-Cooled Power Reactors[R]. IAEA-TECDOC- 1196, 2000.
  • 5Travis J R, Spore J W, Royl Pet al. GASFLOW: A Computational Fluid Dynamics Code for Gases, Aerosols and Combustion. Volumn 1: Theory and Computational Model[S], Karlsruhe: FzK, 2001.
  • 6Travis J R, Spore J W, Royl Pet al. GASFLOW: A Computational Fluid Dynamics Code for Gases, Aerosols and Combustion, Volumn 2: User's Manual[S],Karlsruhe: FzK, 2001.
  • 7Franck M, Jean-Christophe S, Albert R. Catalytic Combustion of Hydrogen for Mitigating Hydrogen Risk in Case of a Severe Accident in a Nuclear Power Plant:Study of Catalysts Poisoning in a Representative Atmosphere[J]. Applied Catalysis B: Environmental, 2004,47(1 ): 47 -58.
  • 8林继铭,贾宝山,刘宝亭.喷淋模式对氢气爆炸影响的初步研究[J].核动力工程,2004,25(3):275-278. 被引量:3

共引文献38

同被引文献30

  • 1方立凯,陈松,周全福.严重事故下核电站安全壳内氢气分布及控制分析[J].核动力工程,2006,27(z1):18-22. 被引量:16
  • 2朱敏,王少波.非能动氢气复合装置的开发设计[J].舰船科学技术,2006,28(2):38-41. 被引量:5
  • 3DM Prabhudharwadkar,K N Iyer. Simulation of Hydrogen Mitiga-tion in Catalytic Recombiner. Part-II : Formulation of a CFD Mod-el[ J]. Nuclear Engineering and Design 2011,241:1758-1767.
  • 4M Heitsch. Fluid dynamic analysis of a catalytic recombiner to re-move [J ] . Nuclear Engineering and Design. 2000,201:1 - 10.
  • 5帕坦卡(美).传热与流体流动的数值计算[M].北京:科学出版社,1984.
  • 6R Siegel,J K Howell. Thermal Radiation Heat Transfer [ M ].Hemisphere Publishing Corporation, Washington DC, 1992.
  • 7G D Raithby,E H Chui. A Finite-Volume Method for Predicting aRadiant Heat Transfer in Enclosures with Participating Media[ J].J. Heat Transfer. 1990,112:415-423.
  • 80 Deutschmann, R Schmidt, F Behrendt, J Wamatz. NumericalModeling of Catalytic Ignition[ C]. Twenty-Sixth Symposium (in-ternational) on Combustion, Naples, Italy, 1996.
  • 9T Kanzieiter. Experiments on the efficacy of hydrogen mitigationmethods within a multi - compartment containment geometry [ R].Final Report BleV-R67. 036-01 Battelle - Institute, Frankfurt-Main, Germany, 1991.
  • 10H Ikeda, P Libby, F A Williams, J Sato. Catalytic combustion ofhydrogen - air mixtures in stagnation flows [ J]. Combustion andFlame. 1993,93 : 138-148.

引证文献5

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部