期刊文献+

中温固体氧化物燃料电池NiO/YSZ阳极的还原过程 被引量:1

The Reduction Process of a NiO/YSZ Anode for Intermediate Temperature Solid Oxide Fuel Cells
下载PDF
导出
摘要 以氢气程序升温还原(H2-TPR)为手段,研究了中温固体氧化物燃料电池烧结NiO/YSZ阳极的还原过程,并通过对电池开路电位和阻抗的原位监测考察了电池中阳极的还原过程.H2-TPR结果表明,阳极烧结温度升高,阳极中的NiO变得难以还原,但当温度提高到1500℃时,NiO还原峰的峰温降低.阳极NiO含量越高,NiO越容易被还原.这是由于烧结过程中NiO颗粒长大和NiO/YSZ界面分离共同作用的结果.电池原位还原过程中开路电位的变化表明,具有高NiO含量的阳极还原较慢.这主要是由于高NiO含量的阳极具有较大的收缩率和大的NiO粒子,导致还原初期产生的大量H2O不能被及时排出,从而抑制了还原过程.电池还原过程中交流阻抗谱的变化表明,50%NiO/YSZ阳极具有最稳定的还原过程.30%和70%NiO/YSZ电池都有一个极化电阻逐渐增大的过程,前者的极化电阻在还原600min后逐渐稳定,而后者并不能稳定. The reduction behavior of a sintered NiO/YSZ anode used for intermediate temperature solid oxide fuel cells was studied by hydrogen temperature-programmed reduction (H2-TPR). The reduction process of the NiO/YSZ anode in the cell was in situ monitored by open circuit voltage (OCV) and electrochemical impedance spectroscopy (EIS). H2-TPR results show that the higher sintering temperature of the NiO/YSZ anode results in a slower reduction of NiO to metallic Ni. However, when the sintering temperature is elevated to 1 500 ℃ , the reduction of sintered NiO/YSZ anode powder instead becomes easier. The higher NiO content in the anode leads to the more rapid reduction of the corresponding anode powder. The above H2-TPR results can be attributed to the combined effects of the growth up of NiO particles and the interface separation between NiO and YSZ caused by the anode sintering. The variation of OCVs reveals that for the cells, the anode with higher NiO content has a slower reduction process, which can be ascribed to the retarding effect of excessive H2O produced during the initial reduction period. It was found from the EIS results that the 50 % NiO/YSZ anode has a most stable reduction process, whereas for the cells with 30 % and 70 % NiO/YSZ anodes, both the polarization resistances gradually increase after experiencing an initial decrease for a short period. The cell polarization resistance with 30 % NiO/ YSZ anode keeps no change any more after reduction for 600 min, whereas the cell polarization resistance with 70 % NiO/YSZ anode increases continuously.
出处 《催化学报》 SCIE EI CAS CSCD 北大核心 2008年第10期979-986,共8页
基金 国家重点基础研究发展计划(973计划,2005CB221404) 国家高技术研究发展计划(863计划,2006AA05Z147) 国家自然科学基金(20676132)
关键词 氧化锆 还原 交流阻抗谱 程序升温还原 固体氧化物燃料电池 nickel yttria zirconia reduction electrochemical impedance spectroscopy temperature-programmed reduction solid oxide fuel cell
  • 相关文献

参考文献21

  • 1Singhal S C. Solid State lonics, 2000, 135(1-4) : 305.
  • 2Stambouli A B, Traversa E. Ren Sust Energy Rev, 2002, 6(5) :433.
  • 3Wincewicz K C, Cooper J S. J Power Sources, 2005, 140 (2) : 280.
  • 4Minh N Q. J Am Ceram Soc, 1993, 765(3) : 563.
  • 5段枣树,闫爱宇,董永来,丛铀,程谟杰,杨维慎.Ba_(0.5)Sr_(0.5)Co_(0.8)Fe_(0.2)O_(3-δ)为阴极的中温固体氧化物燃料电池(英文)[J].催化学报,2005,26(10):829-831. 被引量:6
  • 6Simwonis D, Naoumidis A, Dias F J, Linke J, Moropoulou A. J Mater Res, 1997, 12(6), 1508.
  • 7Fukui T, Ohara S, Naito M, Nogi K. J Eur Ceram Soc, 2003, 23(15): 2963.
  • 8Radovic M, Lara-Curzio E. Acta Mater, 2004, 52 (20) : 5747.
  • 9Klemenso T, Chung C, Larsen P H, Mogensen M. J Electrochem Soc, 2005, 152(11): A2186.
  • 10Wang Y, Walter M E, Sabolsky K, Seabaugh M M. Solid State lonics, 2006, 177(17-18): 1517.

二级参考文献8

  • 1Kim J-W, Virkar A V, Fung K-Z, Mehta K, Singhal S C. J Electrochem Soc, 1999, 146(1): 69
  • 2De Souza S, Visco S J, De Jonghe L C. J Electrochem Soc, 1997, 144(3): L35
  • 3Jiang Y, Virkar A V, Zhao F. J Electrochem Soc, 2001, 148(10): A1091
  • 4Shao Z P, Yang W Sh, Cong Y, Dong H, Tong J H, Xiong G X. J Membr Sci, 2000, 172(1-2): 177
  • 5Shao Z P, Haile S M. Nature, 2004, 431(7005): 170
  • 6Tu H Y, Takeda Y, Imanishi N, Yamamoto O. Solid State Ionics, 1999, 117(3-4): 277
  • 7Uchida H, Arisaka S, Watanabe M. Electrochem Solid-State Lett, 1999, 2(9): 428
  • 8Rossignol C, Ralph J M, Bae J-M, Vaughey J T. Solid State Ionics, 2004, 175(1-4): 59

共引文献5

同被引文献15

  • 1王凤华,郭瑞松,魏楸桐,李海龙.Ni/YSZ阳极材料的制备及性能研究[J].电源技术,2004,28(11):688-690. 被引量:3
  • 2Wei Wu,Wan Bing Guan,Guo Liang Wang,Feng Wang,Wei Guo Wang.In‐Situ Investigation of Quantitative Contributions of the Anode, Cathode, and Electrolyte to the Cell Performance in Anode‐Supported Planar SOFCs[J]. Adv. Energy Mater. . 2014 (10)
  • 3Yong Guan,Yunhui Gong,Wenjie Li,Jeff Gelb,Lei Zhang,Gang Liu,Xiaobo Zhang,Xiangxia Song,Changrong Xia,Ying Xiong,Haiqian Wang,Ziyu Wu,Yangchao Tian.Quantitative analysis of micro structural and conductivity evolution of Ni-YSZ anodes during thermal cycling based on nano-computed tomography[J]. Journal of Power Sources . 2011 (24)
  • 4N. Vivet,S. Chupin,E. Estrade,A. Richard,S. Bonnamy,D. Rochais,E. Bruneton.Effect of Ni content in SOFC Ni-YSZ cermets: A three-dimensional study by FIB-SEM tomography[J]. Journal of Power Sources . 2011 (23)
  • 5A. Sanson,P. Pinasco,E. Roncari.Influence of pore formers on slurry composition and microstructure of tape cast supporting anodes for SOFCs[J]. Journal of the European Ceramic Society . 2007 (6)
  • 6Y. Wang,M.E. Walter,K. Sabolsky,M.M. Seabaugh.Effects of powder sizes and reduction parameters on the strength of Ni–YSZ anodes[J]. Solid State Ionics . 2006 (17)
  • 7San Ping Jiang,Siew Hwa Chan.A review of anode materials development in solid oxide fuel cells[J]. Journal of Materials Science . 2004 (14)
  • 8S.C Singhal.Solid oxide fuel cells for stationary, mobile, and military applications[J]. Solid State Ionics . 2002
  • 9Toshio Suzuki,Zahir Hasan,Yoshihiro Funahashi,Toshiaki Yamaguchi,Yoshinobu Fujishiro,Masanobu Awa.Impact of Anode Microstructure on Solid Oxide Fuel Cells. Science . 2009
  • 10GUILLAUME M,ROSE-NOELLE V,ARMELLE R,et al.Reduction of Ni O to Ni in nanocrystalline composite Ni O/Ce0.9Gd0.1O2-δporous thin films:Microstructure evolution through in situ impedance spectroscopy. J Phys Chem C . 2013

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部